Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics.In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.
Capturing relationships among heterogeneous datasets in large data lakes -traditionally termed schema matching -is one of the most challenging problems that corporations and institutions face nowadays. Discovering and integrating datasets heavily relies on the effectiveness of the schema matching methods in use. However, despite the wealth of research, evaluation of schema matching methods is still a daunting task: there is a lack of openly-available datasets with ground truth, reference method implementations, and comprehensible GUIs that would facilitate development of both novel state-of-the-art schema matching techniques and novel data discovery methods.Our recently proposed Valentine is the first system to offer an open-source experiment suite to organize, execute and orchestrate large-scale matching experiments. In this demonstration we present its functionalities and enhancements: i) a scalable system, with a user-centric GUI, that enables the fabrication of datasets and the evaluation of matching methods on schema matching scenarios tailored to the scope of tabular dataset discovery, ii) a scalable holistic matching system that can receive tabular datasets from heterogeneous sources and provide with similarity scores among their columns, in order to facilitate modern procedures in data lakes, such as dataset discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.