A growing interest for the design of structures to sustain blast-induced loads has been observed in recent years as a result of the worldwide rise of terrorist bombing attacks. The blast loading is usually characterized by a sudden increase in the pressure followed by an exponential decay. The parameters of this pressure pulse are essential for design and can be found in various blast design manuals available in the open literature. One of the most widely used sources is a technical report by Kingery-Bulmash, which provides values for many blast parameters in diagrams and polynomial form. However, it does not include an equation for calculating the blast wave decay coefficient, necessary for constructing the pressure-time history of an explosion at a certain point. In this study, a review of the technical literature that contains expressions for the blast pressure decay coefficient is performed, and relevant comparisons have been made. New equations describing the decay coefficient of the Friedlander equation for both incident and reflected cases for free-air and surface bursts are proposed. These equations express the decay coefficient in terms of the scaled distance and are not valid for close-in detonations. They are entirely based on the Kingery-Bulmash data, and their accuracy is satisfactorily checked against new experimental results and their trends assessed through a sensitivity analysis. Accordingly, the positive phase of the pressure-time curve at a point can be reliably and efficiently generated.
The purpose of this work is to assess the dynamic mechanical behaviour of a commercial glass similar to that of the laminated glass structures used for protection and security applications in buildings. In particular, the study has been focussed on the influence of the strain-rate on the compressive (standard compression test) and tensile (splitting tensile test) strength of this glass. Tests at different strain-rates have been performed in the range between 10-3 to 103 s-1 using standard test equipment for quasi-static tests and a SHPB equipped with a high-speed camera for the dynamic ones. Test data for compression tend to show that there is no substantial sensitivity to the strain-rate concerning ultimate strength and Young modulus. An appreciable increase in the ultimate tensile strength is revealed at higher strain-rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.