SummaryControl of aquatic-stage Anopheles is one of the oldest and most historically successful interventions to prevent malaria, but it has seen little application in Africa. Consequently, the ecology of immature afrotropical Anopheles has received insufficient attention. We therefore examined the population dynamics of African anopheline and culicine mosquitoes using operationally practicable techniques to examine the relative importance and availability of different larval habitats in an area of perennial malaria transmission in preparation for a pilot-scale larval control programme. The study was conducted in Mbita, a rural town on the shores of Lake Victoria in Western Kenya, over 20 months. Weekly larval surveys were conducted to identify the availability of stagnant water, habitat characteristics and larval densities. Adult mosquitoes were collected indoors at fortnightly intervals. Availability of aquatic habitats and abundance of mosquito larvae were directly correlated with rainfall. Adult mosquito densities followed similar patterns but with a time-lag of approximately 1 month. About 70% of all available habitats were man-made, half of them representing cement-lined pits. On average, 67% of all aquatic habitats on a given sampling date were colonized by Anopheles larvae, of which all identified morphologically were A. gambiae sensu lato. Natural and artificial habitats were equally productive over the study period and larval densities were positively correlated with presence of tufts of low vegetation and negatively with non-matted algal content. The permanence of a habitat had no significant influence on larval productivity. We conclude that A. gambiae is broadly distributed across a variety of habitat types, regardless of permanence. All potential breeding sites need to be considered as sources of malaria risk at any time of the year and exhaustively targeted in any larval control intervention.
Since 1988 malaria epidemics have occurred in multiple sites in western Kenya highlands. Climatic variability has been associated with some of the recent epidemics. We examined influences of climatic factors on the distribution and abundance of three malaria vector species, Anopheles gambiae, Anopheles arabiensis, and Anopheles funestus in western Kenya and in the Great Rift Valley. Mosquito samples were collected from the lowland and highland areas with various climatic conditions. The three vector species were abundant in the lower part of western Kenya. An. arabiensis was not found in the areas above 1,400 m elevation in western Kenya Although An. gambiae and An. funestus were found in the sites above 1,700 m in western Kenya, their densities were < 1 per house. In the Great Rift Valley, An. gambiae was not recorded. An. funestus was more widely distributed than the other two species. A stepwise multiple regression analysis found that moisture index was the most important variable in shaping species composition of the An. gambiae complex. Relative abundance of An. gambiae was positively associated with moisture index, suggesting that An. gambiae is more adapted to moist climate. Seasonal differences in species composition were significant in western Kenya, and the proportion of An. funestus was higher in the dry season than the rainy season. Influence of temperature on vector density was significant for all three species. These results imply that climate changes alter the distribution and abundance of malaria vectors in future.
Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector.
Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT.
BackgroundAlthough insecticide-treated bed nets are effective tools, use often does not follow ownership. House structure and space arrangements may make the attempt to use bed nets difficult, especially for school age children. The objectives of this study were to explore whether an individual's sleeping arrangements and house structure affect bed net use in villages along Lake Victoria in western Kenya.MethodsSleeping arrangements of residents were directly observed for use of a bed net, use of a bed, and location. House size, number and types of rooms, bed availability, and residents' ages were estimated. The family heads and mothers were asked about the reason for not using bed nets. Individual bed net use was examined against age and sleeping arrangement. Net use at the household level was examined against four variables: bed availability, bed net availability, house size, and number of rooms.ResultsBed net use by children between five and 15 years of age was lower than that among the other age classes. However, age was dropped from the final model, and sleeping arrangement was significantly associated with net use. Net use was significantly associated with bed availability, number of rooms and their interaction.ConclusionNet use was affected by sleeping arrangement and availability of suitable locations for hanging nets, in addition to net availability. Most residents had likely not realized that sleeping arrangement was a factor in net use. The ease of hanging a net is particularly important for children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.