Governments are attempting to control the COVID-19 pandemic with nonpharmaceutical interventions (NPIs). However, the effectiveness of different NPIs at reducing transmission is poorly understood. We gathered chronological data on the implementation of NPIs for several European, and other, countries between January and the end of May 2020. We estimate the effectiveness of NPIs, ranging from limiting gathering sizes, business closures, and closure of educational institutions to stay-at-home orders. To do so, we used a Bayesian hierarchical model that links NPI implementation dates to national case and death counts and supported the results with extensive empirical validation. Closing all educational institutions, limiting gatherings to 10 people or less, and closing face-to-face businesses each reduced transmission considerably. The additional effect of stay-at-home orders was comparatively small.
Background: Existing analyses of nonpharmaceutical interventions (NPIs) against COVID19 transmission have concentrated on the joint effectiveness of large-scale NPIs. With increasing data, we can move beyond estimating joint effects towards disentangling individual effects. In addition to effectiveness, policy decisions ought to account for the burden placed by different NPIs on the population. Methods: To our knowledge, this is the largest data-driven study of NPI effectiveness to date. We collected chronological data on 9 NPIs in 41 countries between January and April 2020, using extensive fact-checking to ensure high data quality. We infer NPI effectiveness with a novel semi-mechanistic Bayesian hierarchical model, modelling both confirmed cases and deaths to increase the signal from which NPI effects can be inferred. Finally, we study how much perceived burden different NPIs impose on the population with an online survey of preferences using the MaxDiff method. Results: Eight NPIs have a >95% posterior probability of being effective: closing schools (mean reduction in R: 50%; 95% credible interval: 39%-59%), closing nonessential businesses (34%; 16%-49%), closing high-risk businesses (26%; 8%-42%), and limiting gatherings to 10 people or less (28%; 8%-45%), to 100 people or less (17%; -3%-35%), to 1000 people or less (16%; -2%-31%), issuing stay-at-home orders (14%; -2%-29%), and testing patients with respiratory symptoms (13%; -1%-26%). As validation is crucial for NPI models, we performed 15 sensitivity analyses and evaluated predictions on unseen data, finding strong support for our results. We combine the effectiveness and preference results to estimate effectiveness-to-burden ratios. Conclusions: Our results suggest a surprisingly large role for schools in COVID-19 transmission, a contribution to the ongoing debate about the relevance of asymptomatic carriers in disease spreading. We identify additional interventions with good effectiveness-burden tradeoffs, namely symptomatic testing, closing high-risk businesses, and limiting gathering size. Closing most nonessential businesses and issuing stay-at-home orders impose a high burden while having a limited additional effect.
European governments use non-pharmaceutical interventions (NPIs) to control resurging waves of COVID-19. However, they only have outdated estimates for how effective individual NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe’s second wave from subnational case and death data by introducing a flexible hierarchical Bayesian transmission model and collecting the largest dataset of NPI implementation dates across Europe. Business closures, educational institution closures, and gathering bans reduced transmission, but reduced it less than they did in the first wave. This difference is likely due to organisational safety measures and individual protective behaviours—such as distancing—which made various areas of public life safer and thereby reduced the effect of closing them. Specifically, we find smaller effects for closing educational institutions, suggesting that stringent safety measures made schools safer compared to the first wave. Second-wave estimates outperform previous estimates at predicting transmission in Europe’s third wave.
As European governments face resurging waves of COVID-19, non-pharmaceutical interventions (NPIs) continue to be the primary tool for infection control. However, updated estimates of their relative effectiveness have been absent for Europe's second wave, largely due to a lack of collated data that considers the increased subnational variation and diversity of NPIs. We collect the largest dataset of NPI implementation dates in Europe, spanning 114 subnational areas in 7 countries, with a systematic categorisation of interventions tailored to the second wave. Using a hierarchical Bayesian transmission model, we estimate the effectiveness of 17 NPIs from local case and death data. We manually validate the data, address limitations in modelling from previous studies, and extensively test the robustness of our estimates. The combined effect of all NPIs was smaller relative to estimates from the first half of 2020, indicating the strong influence of safety measures and individual protective behaviours--such as distancing--that persisted after the first wave. Closing specific businesses was highly effective. Gathering restrictions were highly effective but only for the strictest limits. We find smaller effects for closing educational institutions compared to the first wave, suggesting that safer operation of schools was possible with a set of stringent safety measures including testing and tracing, preventing mixing, and smaller classes. These results underscore that effectiveness estimates from the early stage of an epidemic are measured relative to pre-pandemic behaviour. Updated estimates are required to inform policy in an ongoing pandemic.
During the second half of 2020, many European governments responded to the resurging transmission of SARS-CoV-2 with wide-ranging non-pharmaceutical interventions (NPIs). These efforts were often highly targeted at the regional level and included fine-grained NPIs. This paper describes a new dataset designed for the accurate recording of NPIs in Europe’s second wave to allow precise modelling of NPI effectiveness. The dataset includes interventions from 114 regions in 7 European countries during the period from the 1st August 2020 to the 9th January 2021. The paper includes NPI definitions tailored to the second wave following an exploratory data collection. Each entry has been extensively validated by semi-independent double entry, comparison with existing datasets, and, when necessary, discussion with local epidemiologists. The dataset has considerable potential for use in disentangling the effectiveness of NPIs and comparing the impact of interventions across different phases of the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.