Left ventricular dysfunction is common in respiratory-distress syndrome, asthma and obstructive lung disease. To understand the contribution of intrathoracic pressure to this problem, we studied the effects of Valsalva and Müller maneuvers on left ventricular function in eight patients. Implantation of intramyocardial markers permitted beat-by-beat measurement of the velocity of fiber shortening (VCF) and left ventricular volume. During the Müller maneuver, VCF and ejection fraction decreased despite an increase in left ventricular volume and a decline in arterial pressure. In addition, when arterial pressure was corrected for changes in intrapleural pressure during either maneuver it correlated better with left ventricular end-systolic volumes than did uncorrected arterial pressures. These findings suggest that negative intrathoracic pressure affects left ventricular function by increasing left ventricular transmural pressures and thus afterload. We conclude that large intrathoracic-pressure changes, such as those that occur in acute pulmonary disease, can influence cardiac performance.
Background-Current surgical methods for treating aortic valve and aortic root pathology vary widely, and the basis for selecting one repair or replacement alternative over another continues to evolve. More precise knowledge of the interaction between normal aortic root dynamics and aortic valve mechanics may clarify the implications of various surgical procedures on long-term valve function and durability. Methods and Results-To investigate the role of aortic root dynamics on valve function, we studied the deformation modes of the left, right, and noncoronary aortic root regions during isovolumic contraction, ejection, isovolumic relaxation, and diastole. Radiopaque markers were implanted at the top of the 3 commissures (sinotubular ridge) and at the annular base of the 3 sinuses in 6 adult sheep. After a 1-week recovery, ECG and left ventricular and aortic pressures were recorded in conscious, sedated animals, and the 3D marker coordinates were computed from biplane videofluorograms (60 Hz). Left ventricular preload, contractility, and afterload were independently manipulated to assess the effects of changing hemodynamics on aortic root 3D dynamic deformation. The ovine aortic root undergoes complex, asymmetric deformations during the various phases of the cardiac cycle, including aortoventricular and sinotubular junction strain and aortic root elongation, compression, shear, and torsional deformation. These deformations were not homogeneous among the left, right, and noncoronary regions. Furthermore, changes in left ventricular volume, pressure, and contractility affected the degree of deformation in a nonuniform manner in the 3 regions studied, and these effects varied during isovolumic contraction, ejection, isovolumic relaxation, and diastole. Conclusions-These complex 3D aortic root deformations probably minimize aortic cusp stresses by creating optimal cusp loading conditions and minimizing transvalvular turbulence. Aortic valve repair techniques or methods of replacement using unstented autograft, allograft, or xenograft tissue valves that best preserve this normal pattern of aortic root dynamics should translate into a lower risk of long-term cusp deterioration. (Circulation. 1999;100[suppl II]:II-54 -II-62.)
The present study was designed to investigate the anisotropy of systolic chord shortening hi the lateral, inferior, septal, and anterior regions of the human left ventricle. At the time of surgery, 12 miniature radiopaque markers were implanted into the left ventricular midwall of the donor heart in 15 cardiac transplant recipients. Postoperative biplane cineradiograms were computeranalyzed to yield the three-dimensional coordinates of these markers at 16.7-msec intervals. In each of the four left ventricular regions, chords were constructed from a central marker to outlying markers, and the percent systolic shortening of each chord was calculated. In each region, chord angles were measured with respect to the circumferential direction (positive angles counterclockwise) and each chord was assigned to one of four angular groups: I. oblique, -45±22.5° or 135±22.5°; II. circumferential, 0±22.5° or 180±22.5°; i n . oblique, 45±22.5° or -135±22.5°; or IV. longitudinal, 90±22.5° or -90±22.5°. In the lateral, inferior, and septal regions, respectively, systolic shortening (mean±SD %) was significantly greater in Group I chords (19±5%, 17±5%, and 15±4%) than those in Group O (15±5%, 12±4%, and 11±4%), Group m (12±4%, 12±5%, and 11±4%), or Group IV (13±5%, 13±6%, and 12±5%). The anterior region was unique hi exhibiting equal shortening in both Group I and Group II chords (16±5%), although the shortening of these chords was significantly greater than that of Group III and Group IV (12±5%) hi this region. A cylindrical mathematical model was developed to relate longitudinal, circumferential, and oblique systolic shortening to torsional deformation about the long axis of the left ventricle. Torsional deformations measured in these 15 hearts were of sufficient magnitude and correct sense to agree with model predictions. These data suggest that torsional deformations of the left ventricle are of fundamental importance in Unking the one-dimensional contraction of the helically wound myocytes to the three-dimensional anisotropic systolic shortening encountered in the transplanted human heart. (Circulation Research 1989;64:915-927) M ore than two centuries have passed since Senac 1 first observed that epicardial and endocardial fibers were aligned longitudinally and midwall fibers were aligned circumfer-
Background Left ventricular (LV) twist, the longitudinal gradient of circumferential rotation about the LV long axis, may play an important role in the storage of potential energy at end systole and its subsequent release as elastic recoil during early diastole; however, the effects of load and inotropic state on LV systolic twist and diastolic untwist in human subjects have not previously been characterized.Methods and Results Six cardiac transplant recipients with 12 implanted radiopaque midwall LV myocardial markers were studied 1 year after transplantation. Biplane cinefluoroscopic marker images and LV pressure were recorded during control conditions and after afterload augnentation (methox-
Background— Better understanding of the precise 3-dimensional geometric changes of the mitral valvular-ventricular complex in chronic ischemic mitral regurgitation (CIMR) is needed in order to devise better surgical repair techniques. We hypothesized that changes after inferior myocardial infarction would be different in hearts that developed CIMR compared with those that did not. Methods and Results— Twenty-four sheep underwent coronary snare and marker placement (annulus, papillary muscles, and anterior and posterior leaflets). After 8 days, cinefluoroscopy provided 3-dimensional marker data, and snare occlusion of obtuse marginal branches created inferior myocardial infarction, including the posterior papillary muscle. After 7 weeks, the 16 surviving animals were studied again and grouped by mitral regurgitation grade (≥ 2+, n=10 versus ≤ 1+, n=6). End-systolic mitral annulus dimensions, components of papillary muscle and leaflet displacement, were calculated. After inferior myocardial infarction, total displacement of the posterior papillary muscle from the midseptal annulus (“saddle horn”) was greater in CIMR(+) animals: 6.5±3.2 versus 3.1±2.7 ( P =0.02), with the posterior papillary muscle moving more laterally (6.8±3.4 versus 2.5±3.5 mm, P =0.01). Increase in mitral annular septal-lateral diameter was greater in animals with CIMR (4.9±2.7 versus 2.3±2.0, P =0.02), and apical displacement of the posterior leaflet (PL) margin was also greater in the CIMR(+) group (1.7±1.0 versus 0.3±0.5, P =0.01). Conclusions— The CIMR(+) group had greater septal-lateral annular dilatation, lateral posterior papillary muscle displacement, and apical PL restriction, indicating that these associated geometric alterations may be important in the pathogenesis of CIMR. Treatment of CIMR should address both annular septal-lateral dilatation and lateral displacement of the posterior papillary muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.