Fluorescent organic semiconducting dots (OSDs) with tunable particle size and surface functionality are synthesized from lignite by chemical oxidation method followed by ultra-sonication techniques and dialysis. The defects and oxygen functionalities play a vital role in the photoluminescent property of the synthesized nanoparticles along with quantum confinement effect. These nanomaterials are suitable for imaging and chemical sensing applications as there is no photobleaching and quenching even after a continuous UV exposure of 24 hours and storage of 2 years. The excellent excitation dependent luminescence of the synthesized carbon dots can be utilized for making a low-cost carbon-based sensor for Cu2+ metal ions sensing. The OSDs show good ratiometric fluorescent sensing and can be used as a reliable probe for the detection of Cu2+ ions. They exhibit excellent detection limit of copper ion in acidic solution to a very low concentration of 0.0089 nM. The fluorescent nanodots synthesized from such an abundant and cost-effective precursor exhibiting high copper ion sensitivity is being reported for the first time.
Coal is a natural energy resource which is mainly used for energy production via combustion. Coal has nanocrystals embedded in it, formed during the coalification process, and is an ideal precursor for nano-carbon dots and diamonds. Herein, we report a facile top-down method to synthesise nanodots and diamonds of the size of 5 nm to 10 nm from three different types of coal by simple chemical leaching. TEM analysis revealed the formation of a mixture of carbon dots, graphene layers, and quantum dots in bituminous coal and sub-bituminous coal. Raman analysis confirmed the existence of synthesized nanodiamond and nano-carbon mixed phase with defects associated with it. It is concluded that graphene quantum dots, nanodiamonds, graphene sheets and carbon dots present in coal can be extracted by simple chemical treatment. These structures can be tuned to photoluminescent material for various optoelectronic applications or energy harvesting devices like super capacitors.
Structural formation of Bi1.65Pb0.35Sr2Ca4Cu5Oy(2245 phase) superconducting compound was investigated by preparing the sample in a new matrix route. The phases formed at different intervals of heat treatment are monitored by X-ray diffraction studies. Bi-2212 phase was found to be the predominant phase till 20 hours of sintering at 850°C after which Bi-2223 phase was found to be the major phase. Traces of Ca2PbO4were also noticed along with 2212 and 2223 phases. For the first time, the highestTConset of 127 K with maximum superconducting volume fraction was observed for the sample sintered at 850°C for 30 hours in this preparation. Further sintering is found to deteriorate theTConset value of the sample. There was no signature of the formation of 2234 or 2245 phase in this synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.