Objective An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation – the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). Methods Using an 8×9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9 – 12 minutes of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. Results Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. Conclusions These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. Significance The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities.
Nearly all electroencephalogram (EEG)-based brain-computer interface (BCI) systems operate in a cue-paced or synchronous mode. This means that the onset of mental activity (thought) is externally-paced and the EEG has to be analyzed in predefined time windows. In the near future, BCI systems that allow the user to intend a specific mental pattern whenever she/he wishes to produce such patterns will also become important. An asynchronous BCI is characterized by continuous analyzing and classification of EEG data. Therefore, it is important to maximize the hits (true positive rate) during an intended mental task and to minimize the false positive detections in the resting or idling state. EEG data recorded during right/left motor imagery is used to simulate an asynchronous BCI. To optimize the classification results, a refractory period and a dwell time are introduced.
This study compared a conventional P300 speller brain-computer interface (BCI) to one used in conjunction with a predictive spelling program. Performance differences in accuracy, bit rate, selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of letters, numbers, and other keyboard commands was used. Participants (n = 24) were required to correctly complete the same 58 character sentence (i.e., correcting for errors) using the predictive speller (PS) and the non-predictive speller (NS), counterbalanced. The PS produced significantly higher OCMs than the NS. Time to complete the task in the PS condition was 12min 43sec as compared to 20min 20sec in the NS condition. Despite the marked improvement in overall output, accuracy was significantly higher in the NS paradigm. P300 amplitudes were significantly larger in the NS than in the PS paradigm; which is attributed to increased workload and task demands. These results demonstrate the potential efficacy of predictive spelling in the context of BCI.
Objective Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Methods Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4(±9.5SD) (range 0–25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. Results BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). Conclusions The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). Significance P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.