Business process redesign (BPR) is an organizational initiative for achieving competitive multi-faceted advantages regarding business processes, in terms of cycle time, quality, cost, customer satisfaction and other critical performance metrics. In spite of the fact that BPR tools and methodologies are increasingly being adopted, process innovation efforts have proven ineffective in delivering the expected outcome. This paper investigates the eligibility of BPMN process models towards the application of redesign methods inspired by data-flow communities. In previous work, the transformation of a business process model to a directed acyclic graph (DAG) has yielded notable optimization results for determining average performance of process executions consisting of ad-hoc processes. Still, the utilization encountered drawbacks due to a lack of input specification, complexity assessment and normalization of the BPMN model and application to more generic business process cases. This paper presents an assessment mechanism that measures the eligibility of a BPMN model and its capability to be effectively transformed to a DAG and be further subjected to data-centric workflow optimization methods. The proposed mechanism evaluates the model type, complexity metrics, normalization and optimization capability of candidate process models, while at the same time allowing users to set their desired complexity thresholds. An indicative example is used to demonstrate the assessment phases and to illustrate the usability of the proposed mechanism towards the advancement and facilitation of the optimization phase. Finally, the authors review BPMN models from both an SOA-based business process design (BPD) repository and relevant literature and assess their eligibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.