Many responses of the zygomycete fungus Phycomyces blakesleeanus are mediated by blue light, e.g. the stimulation of beta-carotene synthesis (photocarotenogenesis) and the formation of fruiting bodies (photomorphogenesis). Even though both responses have been described in detail genetically and biophysically, the underlying molecular events remain unknown. Applying a pharmacological approach in developing mycelia, we investigated the possible involvement of heterotrimeric G proteins in the blue-light transduction chains of both responses. G protein agonists (guanosine triphosphate analogues, cholera toxin, pertussis toxin) mimicked in darkness the effect of blue light for both responses, except for cholera toxin, which was ineffective in increasing the beta-carotene content of dark-grown mycelia. Experiments combining the two toxins indicated that photocarotenogenesis could involve an inhibitory G protein (Gi) type, whereas photomorphogenesis may depend on a transducin (Gt type)-like heterotrimer. The determination of the carB (phytoene dehydrogenase) and chs1 (chitin synthase 1) gene expression under various conditions of exogenous challenge supports the G protein participation. The fluctuations of the time course measurements of the carB and chs1 transcripts are discussed.
Many responses of the zygomycete fungus Phycomyces blakesleeanus are mediated by blue light, e.g. the stimulation of p-carotene synthesis (photocarotenogenesis) and the formation of fruiting bodies (photomorphogenesis). Even though both responses have been described in detail genetically and biophysically, the underlying molecular events remain unknown. Applying a pharmacological approach in developing mycelia, we investigated the possible involvement of heterotrimeric G proteins in the blue-light transduction chains of both responses. G protein agonists (guanosine triphosphate analogues, cholera toxin, pertussis toxin) mimicked in darkness the effect of blue light for both responses, except for cholera toxin, which was ineffective in increasing the pcarotene content of dark-grown mycelia. Experiments combining the two toxins indicated that photocarotenogenesis could involve an inhibitory G protein (Gi) type, whereas photomorphogenesis may depend on a transducin (G, type)like heterotrimer. The determination of the carB (phytoene dehydrogenase) and chsl (chitin synthase 1) gene expression under various conditions of exogenous challenge supports the G protein participation. The fluctuations of the time course measurements of the carB and chsZ transcripts are discussed.
Many responses of the zygomycete fungus Phycomyces blakesleeanus are mediated by blue light, e.g. the stimulation of β‐carotene synthesis (photocarotenogenesis) and the formation of fruiting bodies (photomorphogenesis). Even though both responses have been described in detail genetically and biophysically, the underlying molecular events remain unknown. Applying a pharmacological approach in developing mycelia, we investigated the possible involvement of heterotrimeric G proteins in the blue‐light transduction chains of both responses. G protein agonists (guanosine triphosphate analogues, cholera toxin, pertussis toxin) mimicked in darkness the effect of blue light for both responses, except for cholera toxin, which was ineffective in increasing the β‐carotene content of dark‐grown mycelia. Experiments combining the two toxins indicated that photocarotenogenesis could involve an inhibitory G protein (Gi) type, whereas photomorphogenesis may depend on a transducin (Gt type)‐like heterotrimer. The determination of the carB (phytoene dehydrogenase) and chs1 (chitin synthase 1) gene expression under various conditions of exogenous challenge supports the G protein participation. The fluctuations of the time course measurements of the carB and chs1 transcripts are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.