Hydroiodic acid (HI)-treated reduced graphene oxide (rGO) ink/conductive polymeric composites are considered as promising cold cathodes in terms of high geometrical aspect ratio and low field emission (FE) threshold devices. In this study, four simple, cost-effective, solution-processed approaches for rGO-based field effect emitters were developed, optimized, and compared; rGO layers were coated on (a) n+ doped Si substrate, (b) n+-Si/P3HT:rGO, (c) n+-Si/PCDTBT:rGO, and (d) n+-Si/PCDTBT:PC71BM:rGO composites, respectively. The fabricated emitters were optimized by tailoring the concentration ratios of their preparation and field emission characteristics. In a critical composite ratio, FE performance was remarkably improved compared to the pristine Si, as well as n+-Si/rGO field emitter. In this context, the impact of various materials, such as polymers, fullerene derivatives, as well as different solvents on rGO function reinforcement and consequently on FE performance upon rGO-based composites preparation was investigated. The field emitter consisted of n+-Si/PCDTBT:PC71BM(80%):rGO(20%)/rGO displayed a field enhancement factor of ~2850, with remarkable stability over 20 h and low turn-on field in 0.6 V/μm. High-efficiency graphene-based FE devices realization paves the way towards low-cost, large-scale electron sources development. Finally, the contribution of this hierarchical, composite film morphology was evaluated and discussed.
In this work, we formulate water-based graphene oxide (GO) inks to fabricate moisture energy generators (MEGs) while a two-fold geometric tuning is proposed to encourage enhanced performance. Two GO-based structures with distinctly different thicknesses were prepared as the moisture absorbing layer: a GO-pellet (GOP) and a thinner GO-film (GOF). The effect of electrical contacts’ configuration on the MEG’s output voltage (Vo) was evaluated as a second geometric tunning approach by varying the surface area of the contacts and their orientation with respect to the GO plane, i.e., horizontal or vertical. GOF-based devices that employed a horizontal contacts’ configuration demonstrated champion Vo values (~350 mV) and the fastest response to humidity (3 min required to reach maximum Vo when the relative humidity, or RH, was increased). In GOP devices with horizontal point-like contacts, Vo is inversely related to the contacts’ distance, with a maximum Vo of ~205 mV achieved at a ~1 mm contacts’ distance. GOP-based MEGs with point-like contacts placed vertically to the GO-plane yielded a higher Vo value (~285 mV), while the humidity response time was 15 min. Replacing these contacts with large area electrodes in GOP devices resulted in devices with a slower response to humidity (~30 min) due to a smaller exposed GO surface area. These geometric tuning techniques allowed for the investigation of the optimum device configuration towards efficient moisture-based energy generation with a fast response.
Hydroiodic acid (HI) treated - reduced graphene oxide (rGO) ink/conductive polymeric composites are considered as promising cold cathodes in terms of high geometrical aspect ratio and low field emission (FE) threshold devices. In this study, four simple, cost-effective, solution-processed approaches for rGO-based field effect emitters were developed, optimized and compared; rGO layers were coated on a) n+ doped Si substrate, b) n+-Si/P3HT:rGO, c) n+-Si/PCDTBT:rGO and d) n+-Si/PCDTBT:PC71BM:rGO composites, respectively. The fabricated emitters were optimized by tailoring the concentration ratios of their preparation and field emission characteristics. In a critical composite ratio, FE performance was remarkably improved compared to the pristine Si, as well as n+-Si/rGO field emitter. In this context, the impact of various materials, such as polymers, fullerene derivatives, as well as different solvents on rGO function reinforcement and consequently on FE performance upon rGO-based composites preparation was investigated. The field emitter consisted of n+-Si/PCDTBT:PC71BM(80%):rGO(20%)/rGO displayed a field enhancement factor of ∼2850, with remarkable stability over 20h and low turn-on field in 0.6V/μm. High-efficiency graphene-based FE devices realization paves the way towards low-cost, large-scale electron sources development. Finally, the contribution of this hierarchical, composite film morphology was evaluated and discussed.
Antisolvent engineering with the octylammonium salt OABr improves the quality of the perovskite film and suppresses nonradiative losses by 43.6%, resulting in high performance and stable inverted perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.