Introduction Achilles tendon ruptures affect 15 (women) to 55 (men) per 100,000 people each year, and controversy continues to exist regarding optimal treatment and rehabilitation protocols. The objective of this study was to investigate the temporal effects of surgical repair and immobilization/activity (IM/ACT) on Achilles healing and limb function following complete transection in rodents. Methods Injured tendons (n=128) were repaired or left non-repaired, and animals groups immobilized in plantarflexion for 1, 3, or 6 weeks that later resumed cage and treadmill activity for 5, 3, or 0 weeks (IM1/ACT5, IM3/ACT3, IM6/ACT0). Animals were euthanized after 1- or 6-weeks post-injury. Results At 6-weeks post injury, IM1/ACT5 groups had increased range of motion and decreased ankle joint toe stiffness compared to IM3/ACT3 groups. IM6/ACT0 had decreased tendon cross sectional area, but increased tendon echogenicity and collagen alignment. Surgical treatment dramatically decreased fatigue cycles to failure in repaired tendons from earlier IM1/ACT5 groups. Normalized comparisons between 6- and 1-week post-injury data demonstrated that changes in healing tendon properties (area, alignment, and echogenicity) were maximized by IM1/ACT5 compared to IM6/ACT0. Discussion/Conclusion This study demonstrates how the temporal post-injury healing response of rodent Achilles tendons depends on both surgical treatment and the timing of IM/ACT.
The Achilles tendon is the most commonly ruptured tendon in the human body. Numerous studies have reported incidence of these injuries to be upwards of five times as common in men than women. Therefore, the objective of this study was to investigate the sex- and hormone-specific differences between Achilles tendon and muscle between female, ovariectomized female (ovarian hormone deficient), and male rats. Uninjured tissues were collected from all groups for mechanical, structural, and histological analysis. Our results showed that while cross-sectional area and failure load were increased in male tendons, female tendons exhibited superior tendon material properties and decreased muscle fiber size. Specifically, linear and dynamic moduli were increased while viscoelastic properties (e.g., hysteresis, percent relaxation) were decreased in female tendons, suggesting greater resistance to deformation under load and more efficient energy transfer, respectively. No differences were identified in tendon organization, cell shape, cellularity, or proteoglycan content. Additionally, no differences in muscle fiber type distribution were observed between groups. In conclusion, inferior tendon mechanical properties and increased muscle fiber size may explain the increased susceptibility for Achilles tendon injury observed clinically in men compared to women.
Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing.
Conservative (non‐operative) treatment of Achilles tendon ruptures is a common alternative to operative treatment. Following rupture, ankle immobilization in plantarflexion is thought to aid healing by restoring tendon end‐to‐end apposition. However, early activity may improve limb function, challenging the role of immobilization position on tendon healing, as it may affect loading across the injury site. This study investigated the effects of ankle immobilization angle in a rat model of Achilles tendon rupture. We hypothesized that manipulating the ankle from full plantarflexion into a more dorsiflexed position during the immobilization period would result in superior hindlimb function and tendon properties, but that prolonged casting in dorsiflexion would result in inferior outcomes. After Achilles tendon transection, animals were randomized into eight immobilization groups ranging from full plantarflexion (160°) to mid‐point (90°) to full dorsiflexion (20°), with or without angle manipulation. Tendon properties and ankle function were influenced by ankle immobilization position and time. Tendon lengthening occurred after 1 week at 20° compared to more plantarflexed angles, and was associated with loss of propulsion force. Dorsiflexing the ankle during immobilization from 160° to 90° produced a stiffer, more aligned tendon, but did not lead to functional changes compared to immobilization at 160°. Although more dorsiflexed immobilization can enhance tissue properties and function of healing Achilles tendon following rupture, full dorsiflexion creates significant tendon elongation regardless of application time. This study suggests that the use of moderate plantarflexion and earlier return to activity can provide improved clinical outcomes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
Background: Hyperpronation of the first metatarsal in hallux valgus (HV) is poorly understood by conventional weightbearing radiography. We aimed to evaluate this parameter using weightbearing computed tomography (WBCT) and to understand its association with other standard measurements. Methods: Retrospective evaluation of WBCT and weightbearing radiographs (WBXRs) was performed for 20 patients with HV feet and 20 controls with no such deformity. Axial computed tomography images of both groups were compared for the first metatarsal pronation angle (alpha angle) and tibial sesamoid subluxation (TSS) grades. The HV angle (HVA), first-second intermetatarsal angle (IMA), first metatarsal-medial cuneiform angle (MMCA), Meary’s angle, and calcaneal pitch (CP) angle of the study and control groups were compared on both WBXR and the corresponding 2-dimensional images of WBCT. All measurements were independently performed by 1 musculoskeletal radiology fellow and 1 foot and ankle surgical fellow. Measurements were averaged and interobserver reliability was calculated. Results: The HV group demonstrated significantly higher values for TSS grade ( P < .001) but not for alpha angle ( P = .121) compared with controls. Likewise, significantly elevated HVA and IMA were noted in the HV group on both imaging modalities, while no such differences were observed for the CP angle. Higher MMCA and Meary’s angle in the HV group were evident only on WBXR (MMCA, P = .039; Meary’s, P = .009) but not on WBCT (MMCA, P = .183; Meary’s, P = .171). Among all, the receiver operating characteristic (ROC) curves demonstrated the greatest area under the curve (AUC) for HVA, followed by IMA. The alpha angle performed only just outside the range of chance (AUC, 0.65; 95% CI, 0.52-0.69). The Pearson’s correlations of the alpha angle, in the HV group, revealed a significant linear relationship with TSS grade and with HVA on WBXR, and only trended toward a weak linear relationship with IMA and with HVA on WBCT. Conclusion: The alpha angle, a measure of abnormal hyperpronation of the first metatarsal, was an independent factor that may coexist with other parameters in HV, but in isolation had limited diagnostic utility. “Abnormal” alpha angles were even observed in individuals without HV. Increases in IMA and MMCA were not necessarily associated with similar increases in alpha angle, despite moderate correlations with TSS grade and HVA on WBXR. Nevertheless, the WBCT was a useful method for assessing hyperpronation and guiding surgical management in individual cases. Level of Evidence: Level III, retrospective comparative study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.