A small quantity of hexagonal boron nitride (h-BN) flakes is doped into a nematic liquid crystal (LC). The epitaxial interaction between the LC molecules and the h-BN flakes rising from the π−π electron stacking between the LC’s benzene rings and the h-BN’s honeycomb structure stabilizes pseudo-nematic domains surrounding the h-BN flakes. Electric field-dependent dielectric studies reveal that the LC-jacketed h-BN flakes follow the nematic director reorientation upon increasing the applied electric field. These anisotropic pseudo-nematic domains exist in the isotropic phase of the LC+h-BN system as well, and interact with the external electric field, giving rise to a nonzero dielectric anisotropy in the isotropic phase. Further investigations reveal that the presence of the h-BN flakes at a low concentration in the nematic LC enhances the elastic constants, reduces the rotation viscosity, and lowers the pre-tilt angle of the LC. However, the Fréedericksz threshold voltage stays mostly unaffected in the presence of the h-BN flakes. Additional studies show that the presence of the h-BN flakes enhances the effective polar anchoring strength in the cell. The enhanced polar anchoring strength and the reduced rotational viscosity result in faster electro-optic switching in the h-BN-doped LC cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.