Abstract:Rice is an essential crop in Ghana. Several aspects of rice have been studied to increase its production; however, the environmental aspects, including impact on climate change, have not been studied well. There is therefore a gap in knowledge, and hence the need for continuous research. By accessing academic portals, such as Springer Open, InTech Open, Elsevier, and the Kwame Nkrumah University of Science and Technology's offline campus library, 61 academic publications including peer reviewed journals, books, working papers, reports, etc. were critically reviewed. It was found that there is a lack of data on how paddy rice production systems affect greenhouse gas (GHG) emissions, particularly emissions estimation, geographical location, and crops. Regarding GHG emission estimation, the review identified the use of emission factors calibrated using temperate conditions which do not suit tropical conditions. On location, most research on rice GHG emissions have been carried out in Asia with little input from Africa. In regard to crops, there is paucity of in-situ emissions data from paddy fields in Ghana. Drawing on the review, a conceptual framework is developed using Ghana as reference point to guide the discussion on fertilizer application, water management rice cultivars, and soil for future development of adaptation strategies for rice emission reduction.
Coconut husks with the shells attached are potential bioenergy resources for fuel-constrained communities in Ghana. In spite of their energy potential, coconut husks and shells are thrown away or burned raw resulting in poor sanitation and environmental pollution. This study focuses on quantifying the waste proportions, calorific values and pollutant emissions from the burning of raw uncharred and charred coconut wastes in Ghana. Fifty fresh coconuts were randomly sampled, fresh coconut waste samples were sun-dried up to 18 days, and a top-lit updraft biochar unit was used to produce biochar for the study. The heat contents of the coconut waste samples and emissions were determined. From the results, 62–65% of the whole coconut fruit can be generated as wastes. The calorific value of charred coconut wastes was 42% higher than the uncharred coconut wastes. PM2.5 and CO emissions were higher than the WHO 24 h air quality guidelines (AQG) value at 25 °C, 1 atmosphere, but the CO concentrations met the WHO standards based on exposure time of 15 min to 8 h. Thus, to effectively utilise coconut wastes as sustainable bioresource-based fuel in Ghana, there is the need to switch from open burning to biocharing in a controlled system to maximise the calorific value and minimise smoke emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.