The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152–157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.
Noise generated by offshore wind turbines and support structures radiates and propagates through the air, water and sediment. Predicting noise levels around wind turbine structures at sea is required to estimate the effects of the noise on marine life. We used Finite Element (FE) and Parabolic Equation (PE) models to predict long range propagation of noise from the construction and operation of offshore wind turbines. FE analysis produced pressure outputs at short ranges were used as a starting field for a modified PE propagation model. Furthermore, we investigated the optimum range for the transition to PE modeling. The effects of various sediment types were also considered determining the pressure starting field. In FE analysis models, we implemented the axisymmetric elements and implicit dynamic analysis with pressure impact loading and vertical acceleration boundary conditions to simulate pile driving and operational noise radiation. We will present the PE long range pressure field outputs from the offshore pile driving and operation for a shallow water environment around Block Island, Rhode Island.
The three-dimensional Monterey–Miami parabolic equation model is used to simulate a nonlinear internal wave (NIW) crossing the sound field in a shallow water environment. The impetus for this research stems from acoustic measurements taken during the Shallow Water '06 (SW06) field experiment, where a NIW traversed the water column such that soliton wavecrests were nearly parallel to the source–receiver path. Horizontal refraction effects are important in this scenario. A sound speed profile adapted from experimental SW06 data is used to simulate the NIW, assuming variations along the wavecrests (e.g., curvature) are negligible. Broadband and modal energy metrics show acoustic fluctuations due to internal wave activity. Repeated model runs simulate the NIW crossing the parabolic equation (PE) field over space and time. Statistical analysis shows the PE data are best fit by a lognormal distribution but tends to an exponential distribution during certain scenarios. Small angle differences between the acoustic track and the propagating NIW cause substantial differences in energy distribution throughout the PE field. While refraction effects due to the leading edge of the NIW's arrival are important in all cases, the impacts of focusing and defocusing in the perfectly parallel case dominate the field fluctuations. In the non-parallel case, the strong fluctuations introduced by the passage of the NIW are of similar order to the refraction off the leading edge.
Human usage of coastal water bodies continues to increase and many invertebrates face a broad suite of anthropogenic stressors (e.g., warming, pollution, acidification, fishing pressure). Underwater sound is a stressor that continues to increase in coastal areas, but the potential impact on invertebrates is not well understood. In addition to masking natural sound cues which may be important for behavioral interactions, there is a small but increasing body of scientific literature indicating sublethal physiological stress may occur in invertebrates exposed to high levels of underwater sound, particularly low frequency sounds such as vessel traffic, construction noise, and some types of sonar. Juvenile and sub-adult blue crabs (Callinectes sapidus) and American lobsters (Homarus americanus) were exposed to simulated low-frequency vessel noise (a signal was low-pass filtered below 1 kHz to ensure low-frequency content only) and mid-frequency sonar (a 1-s 1.67 kHz continuous wave pulse followed by a 2.5 to 4.0 kHz 1-s linear frequency modulated chirp) and behavioral response (the animal’s activity level) was quantified during and after exposure using EthoVision XT™ from overhead video recordings. Source noise was quantified by particle acceleration and pressure. Physiological response to the insults (stress and recovery) were also quantified by measuring changes in hemolymph heat shock protein (HSP27) and glucose over 7 days post-exposure. In general, physiological indicators returned to baseline levels within approximately 48 h, and no observable difference in mortality between treatment and control animals was detected. However, there was a consistent amplified hemolymph glucose signal present 7 days after exposure for those animals exposed to mid-frequency sound and there were changes to C. sapidus competitive behavior within 24 h of exposure to sound. These results stress the importance of considering the impacts of underwater sound among the suite of stressors facing marine and estuarine invertebrates, and in the discussion of management actions such as protected areas, impact assessments, and marine spatial planning efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.