Several vaccinia virus early proteins (encoded by genes B1R, H5R and I3L) synthesized in the presence of an inhibitor of DNA synthesis localize, at least in part, to punctate inclusions that are visible by immunofluorescence in the cytoplasm of poxvirus-infected cells. It is shown that these inclusions contain DNA (visualized by DAPI staining of the infected cells) and that the number of inclusions is proportional to the amount of input virus. Their mean diameter (about 680 nm) was larger than that of purified vaccinia virus particles. When the inhibition of DNA synthesis was reversed, incorporation of BrdU into the B1R particles was demonstrated after labelling for 30 min, suggesting that these cytoplasmic focal sites correspond to viral DNA replication complexes that have initiated normally but are inhibited at the step of DNA chain elongation. These experiments suggest strongly that these inclusions are the precursors of the virosomes.
The phosphorylation state of vaccinia virus (VV) protein H5R synthesized in infected cells was investigated by two-dimensional gel electrophoresis. Most of the H5R protein was underphosphorylated (pI 5n9 to 6n8) and, on centrifugation of cell lysates, was associated with virosomes sedimenting with nuclei. However, about a quarter of the H5R protein synthesized was highly phosphorylated (pI 5n5), and this was the major form of the H5R protein present in cytoplasmic extracts. Immunofluorescence of VVinfected cells in the absence of DNA replication
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.