Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
The major histocompatibility complex (MHC) class-I pathway supports the detection of cancer and viruses by the immune system. It presents parts of proteins (peptides) from inside a cell on its membrane surface enabling visiting immune cells that detect non-self peptides to terminate the cell. The ability to predict whether a peptide will get presented on MHC Class I molecules helps in designing vaccines so they can activate the immune system to destroy the invading disease protein.We designed a prediction model using a BERT-based architecture (ImmunoBERT) that takes as input a peptide and its surrounding regions (N and C-terminals) along with a set of MHC class I (MHC-I) molecules. We present a novel application of well known interpretability techniques, SHAP and LIME, to this domain and we use these results along with 3D structure visualizations and amino acid frequencies to understand and identify the most influential parts of the input amino acid sequences contributing to the output. In particular, we find that amino acids close to the peptides' N-and C-terminals are highly relevant. Additionally, some positions within the MHC proteins (in particular in the A, B and F pockets) are often assigned a high importance ranking -which confirms biological studies and the distances in the structure visualizations. The source code can be found on https://github.com/hcgasser/ImmunoBERT. * jointly supervised 1st Workshop on eXplainable AI approaches for debugging and diagnosis (XAI4Debugging@NeurIPS2021).
Tumor antigens can emerge through multiple mechanisms, including translation of non-coding genomic regions. This non-canonical category of antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry to enable the discovery of non-canonical MHC-associated peptides (ncMAPs) from non-coding regions. Considering that the emergence of tumor antigens can also involve post-translational modifications, we included an open search component in our pipeline. Leveraging the wealth of mass spectrometry-based immunopeptidomics, we analyzed 26 MHC class I immunopeptidomic studies of 9 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant post-translational modifications, using spectral matching and controlled their false discovery rate (FDR) to 1%. Interestingly, the non-canonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 54.85%. Here, we reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targeting agents for T-cell therapies or vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.