In this paper, the problem of energy trading between smart grid prosumers, who can simultaneously consume and produce energy, and a grid power company is studied. The problem is formulated as a single-leader, multiple-follower Stackelberg game between the power company and multiple prosumers. In this game, the power company acts as a leader who determines the pricing strategy that maximizes its profits, while the prosumers act as followers who react by choosing the amount of energy to buy or sell so as to optimize their current and future profits. The proposed game accounts for each prosumer's subjective decision when faced with the uncertainty of profits, induced by the random future price. In particular, the framing effect, from the framework of prospect theory (PT), is used to account for each prosumer's valuation of its gains and losses with respect to an individual utility reference point. The reference point changes between prosumers and stems from their past experience and future aspirations of profits. The followers' noncooperative game is shown to admit a unique pure-strategy Nash equilibrium (NE) under classical game theory (CGT) which is obtained using a fully distributed algorithm. The results are extended to account for the case of PT using algorithmic solutions that can achieve an NE under certain conditions. Simulation results show that the total grid load varies significantly with the prosumers' reference point and their loss-aversion level. In addition, it is shown that the power company's profits considerably decrease when it fails to account for the prosumers' subjective perceptions under PT.
The proliferation of distributed generation and storage units is leading to the development of local, smallscale distribution grids, known as microgrids (MGs). In this paper, the problem of optimizing the energy trading decisions of MG operators (MGOs) is studied using game theory. In the formulated game, each MGO chooses the amount of energy that must be sold immediately or stored for future emergencies, given the prospective market prices which are influenced by other MGOs' decisions. The problem is modeled using a Bayesian game to account for the incomplete information that MGOs have about each others' levels of surplus. The proposed game explicitly accounts for each MGO's subjective decision when faced with the uncertainty of its opponents' energy surplus. In particular, the so-called framing effect, from the framework of prospect theory (PT), is used to account for each MGO's valuation of its gains and losses with respect to an individual utility reference point. The reference point is typically different for each individual and originates from its past experiences and future aspirations. A closed-form expression for the Bayesian Nash equilibrium is derived for the standard game formulation. Under PT, a best response algorithm is proposed to find the equilibrium. Simulation results show that, depending on their individual reference points, MGOs can tend to store more or less energy under PT compared to classical game theory. In addition, the impact of the reference point is found to be more prominent as the emergency price set by the power company increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.