: A tight, physiological link between the pineal gland and the immune system is emerging from a series of experimental studies. This link might reflect the evolutionary connection between self‐recognition and reproduction. Pinealectomy or other experimental methods which inhibit melatonin synthesis and secretion induce a state of immunodepression which is counteracted by melatonin. In general, melatonin seems to have an immunoenhancing effect that is particularly apparent in immunodepressive states. The negative effect of acute stress or immunosuppressive pharmacological treatments on various immune parameters are counteracted by melatonin. It seems important to note that one of the main targets of melatonin is the thymus, i.e., the central organ of the immune system. The clinical use of melatonin as an immunotherapeutic agent seems promising in primary and secondary immunodeficiencies as well as in cancer immunotherapy. The immunoenhancing action of melatonin seems to be mediated by T‐helper cell‐derived opioid peptides as well as by lymphokines and, perhaps, by pituitary hormones. Melatonin‐induced‐immuno‐opioids (MHO) and lymphokines imply the presence of specific binding sites or melatonin receptors on cells of the immune system. On the other hand, lymphokines such as ‐γ‐interferon and interleukin‐2 as well as thymic hormones can modulate the synthesis of melatonin in the pineal gland. The pineal gland might thus be viewed as the crux of a sophisticated immunoneuroendocrine network which functions as an unconscious, diffuse sensory organ.
Recently, it was demonstrated that inbred strains of mice have a clearcut circadian rhythm of pineal and serum melatonin. Moreover, it is known that melatonin is involved in many immunoregulatory functions. Among them, hematopoiesis is influenced by the action of melatonin via melatonin-induced opioids on kappa-opioid receptors, which are present on stromal bone marrow cells. Therefore, the present study was carried out to investigate the presence of melatonin in the bone marrow in which immunocompetent cells are generated. Specifically, we aimed at answering the following question: are bone marrow cells involved in melatonin synthesis? In the present study, we demonstrate that (1) bone marrow cells contain high concentrations of melatonin; (2) bone marrow cells have a N-acetyltransferase activity and they express the mRNA encoding hydroxy-O-methyltransferase and (3) bone marrow cells cultured for a prolonged period exhibited high levels of melatonin. Results presented here suggest that mouse and human bone marrow and bone marrow cells are capable of de novo synthesis of melatonin, which may have intracellular and or paracrine functions.
The interaction between the brain and the immune system is essential for the adaptive response of an organism against environmental challenges. In this context, the pineal neurohormone melatonin (MEL) plays an important role. T-helper cells express G-protein coupled cell membrane MEL receptors and, perhaps, MEL nuclear receptors. Activation of MEL receptors enhances the release of T-helper cell Type 1 (Th1) cytokines, such as gamma-interferon (gamma-IFN) and IL-2, as well as of novel opioid cytokines. MEL has been reported also to enhance the production of IL-1, IL-6 and IL-12 in human monocytes. These mediators may counteract stress-induced immunodepression and other secondary immunodeficiencies and protect mice against lethal viral encephalitis, bacterial diseases and septic shock. Therefore, MEL has interesting immunotherapeutic potential in both viral and bacterial infections. MEL may also influence haemopoiesis either by stimulating haemopoietic cytokines, including opioids, or by directly affecting specific progenitor cells such as pre-B cells, monocytes and NK cells. MEL may thus be used to stimulate the immune response during viral and bacterial infections as well as to strengthen the immune reactivity as a prophylactic procedure. In both mice and cancer patients, the haemopoietic effect of MEL may diminish the toxicity associated with common chemotherapeutic protocols. Through its pro-inflammatory action, MEL may play an adverse role in autoimmune diseases. Rheumatoid arthritis patients have increased nocturnal plasma levels of MEL and their synovial macrophages respond to MEL with an increased production of IL-12 and nitric oxide (NO). In these patients, inhibition of MEL synthesis or use of MEL antagonists might have a therapeutic effect. In other diseases such as multiple sclerosis the role of MEL is controversial. However, the correct therapeutic use of MEL or MEL antagonists should be based on a complete understanding of their mechanism of action. It is not yet clear whether MEL acts only on Th1 cells or also on T-helper Type 2 cells (Th2). This is an important point as the Th1/Th2 balance is of crucial importance in the immune system homeostasis. Furthermore, MEL being the endocrine messenger of darkness, its endogenous synthesis depends on the photoperiod and shows seasonal variations. Similarly, the pharmacological effects of MEL might also be season-dependent. No information is available concerning this point. Therefore, studies are needed to investigate whether the immunotherapeutic effect of MEL changes with the alternating seasons.
SummaryMelatonin, a neurohormone produced mainly by the pineal gland, is a modulator of haemopoiesis and of immune cell production and function, both in vivo and in vitro. Physiologically, melatonin is associated with T-helper 1 (Th1) cytokines, and its administration favours Th1 priming. In both normal and leukaemic mice, melatonin administration results in quantitative and functional enhancement of natural killer (NK) cells, whose role is to mediate defenses against virus-infected and cancer cells. Melatonin appears to regulate cell dynamics, including the proliferative and maturational stages of virtually all haemopoietic and immune cells lineages involved in host defense -not only NK cells but also T and B lymphocytes, granulocytes and monocytes -in both bone marrow and tissues. In particular, melatonin is a powerful antiapoptotic signal promoting the survival of normal granulocytes and B lymphocytes. In mice bearing mid-stage leukaemia, daily administration of melatonin results in a survival index of 30-40% vs. 0% in untreated mice. Thus, melatonin seems to have a fundamental role as a system regulator in haemopoiesis and immuno-enhancement, appears to be closely involved in several fundamental aspects of host defense and has the potential to be useful as an adjuvant tumour immunotherapeutic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.