The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis. Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35−/− mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-β deficiency or simultaneous neutralization of IL-12p35– and IL-17A–dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4+ and CD8+ α/β+ T cells are sufficient to mount a protective immune response and that an IL-17A–mediated response can compensate for the partial deficiency of an IFN-γ–mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ–and IL-17RA–mediated responses in the control of mucosal infection by Brucella.
Live attenuated vaccines play a key role in the control of many human and animal pathogens. Their rational development is usually helped by identification of the reservoir of infection, the lymphoid subpopulations associated with protective immunity as well as the virulence genes involved in pathogen persistence. Here, we compared the course of Brucella melitensis infection in C57BL/6 mice infected via intraperitoneal (i.p.), intranasal (i.n.) and intradermal (i.d.) route and demonstrated that the route of infection strongly impacts all of these parameters. Following i.p. and i.n. infection, most infected cells observed in the spleen or lung were F4/80 + myeloid cells. In striking contrast, infected Ly6G + neutrophils and CD140a + fibroblasts were also observed in the skin after i.d. infection. The virB operon encoding for the type IV secretion system is considered essential to deflecting vacuolar trafficking in phagocytic cells and allows Brucella to multiply and persist. Unexpectedly, the Δ virB Brucella strain, which does not persist in the lung after i.n. infection, persists longer in skin tissues than the wild strain after i.d. infection. While the CD4 + T cell-mediated Th1 response is indispensable to controlling the Brucella challenge in the i.p. model, it is dispensable for the control of Brucella in the i.d. and i.n. models. Similarly, B cells are indispensable in the i.p. and i.d. models but dispensable in the i.n. model. γδ + T cells appear able to compensate for the absence of αβ + T cells in the i.d. model but not in the other models. Taken together, our results demonstrate the crucial importance of the route of infection for the host pathogen relationship.
Inflammatory properties and adjuvant potential of synthetic glycolipids homologous to mycolate esters of the cell wall of Mycobacterium tuberculosis.Hermann Giresse TIMA (1), Juma'a Raheem AL DULAYYMI (2), Olivier DENIS (1), Pauline LEHEBEL (1), Klarah Sherzad BAOLS (2), Mohsin Omar MOHAMMED (2), Laurent L'HOMME (3), Mohaned Mohammed SAHB (2), Georges POTEMBERG (1), Sylvie LEGRAND (3), Roland LANG (4), Rudi BEYAERT (5), Jacques PIETTE (3), MarkStephen BAIRD (2)#, Kris HUYGEN (1)#, Marta ROMANO (1)*#.
Most studies on molds focus on Alternaria alternata and Aspergillus fumigatus. Here, we report on inflammatory and allergenic properties of more typical indoor species Aspergillus versicolor, P. chrysogenum, C. cladosporioïdes, and C. sphaerospermum that were compared to A. alternata and A. fumigatus. In a mouse model, after intranasal instillation, A. alternaria, A. versicolor, and C. sphaerospermum induced the early recruitment of neutrophils and the strong expression of inflammatory markers in the bronchoalveolar lavages fluids. A. fumigatus also induced the early accumulation of neutrophils but with lower levels of inflammatory markers. Chronic treatment induced variable response according to species: P. chrysogenum and A. fumigatus appeared strong pro-allergenic inducers compared to A. alternata and C. sphaerospermum while A. versicolor and C. cladosporioides induced a mixed pro-allergenic/pro-inflammatory response. In mold-sensitized asthmatics, mold-specific Immunoglobulin E (IgE) were detected with an in-house dot-blot assay. A. fumigatus and A. alternata were the most frequent sensitizers. Altogether, P. chrysogenum, P. brevicompactum, C. sphaerospermum, and C. cladosporïoides were the "major sensitizer" (defined as the strongest response against a single mold species) for almost 30% of the asthmatics. These results show that, not only A. alternata and A. fumigatus, but also indoor species have strong inflammatory and allergic properties and a harmful potency.
Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.