We define a Weyl-type curvature tensor that provides a characterisation for Finsler metrics of constant flag curvature. When the Finsler metric reduces to a Riemannian metric, the Weyl-type curvature tensor reduces to the classical projective Weyl tensor. In the general case, the Weyl-type curvature tensor differs from the Weyl projective curvature, it is not a projective invariant, and hence Beltrami Theorem does not work in Finsler geometry. We provide the relation between the Weyl-type curvature tensors of two projectively related Finsler metrics. Using this formula we show that a projective deformation preserves the property of having constant flag curvature if and only if the projective factor is a Hamel function. This way we provide a Finslerian version of Beltrami Theorem.
Abstract. For a 2-dimensional non-flat spray we associate a Berwald frame and a 3-dimensional distribution that we call the Berwald distribution. The Frobenius integrability of the Berwald distribution characterises the Finsler metrizability of the given spray. In the integrable case, the sought after Finsler function is provided by a closed, homogeneous 1-form from the annihilator of the Berwald distribution. We discuss both the degenerate and non-degenerate cases using the fact that the regularity of the Finsler function is encoded into a regularity condition of a 2-form, canonically associated to the given spray. The integrability of the Berwald distribution and the regularity of the 2-form have simple and useful expressions in terms of the Berwald frame.
The paper presents the calculation method of the theoretical deviations resulting in the processing of worms screws profiles bottoms using the Vortex threading method. Because the deviation of this size depends on several factors, a program has been developed in order to analyze its size according to the screw constructive parameters but also to the threading device’s constructive characteristics. Also, the working regime used was taken into account. Base on these, the conclusions were drawn regarding these theoretical deviations size and of their influence on the manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.