Abstract.The reductions of the integrable N -wave type equations solvable by the inverse scattering method with the generalized Zakharov-Shabat systems L and related to some simple Lie algebra g are analyzed. The Zakharov-Shabat dressing method is extended to the case when g is an orthogonal algebra. Several types of one soliton solutions of the corresponding N -wave equations and their reductions are studied. We show that to each soliton solution one can relate a (semi-)simple subalgebra of g. We illustrate our results by 4-wave equations related to so(5) which find applications in Stockes-anti-Stockes wave generation.
Abstract. A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next, by using the Wronskian relations, the mapping between the potential and the minimal sets of scattering data is constructed. Furthermore, completeness relations for the 'squared solutions' (generalized exponentials) are derived. Next, expansions of the potential and its variation are obtained. This demonstrates that the interpretation of the inverse scattering method as a generalized Fourier transform holds true. Finally, the Hamiltonian structures of these generalized multi-component Heisenberg ferromagnetic (MHF) type integrable models on A.III-type symmetric spaces are briefly analyzed.
Abstract. The analysis and the classification of all reductions for the nonlinear evolution equations solvable by the inverse scattering method is an interesting and still open problem. We show how the second order reductions of the N -wave interactions related to low-rank simple Lie algebras g can be embedded also in the Weyl group of g. This allows us to display along with the well known ones a number of new types of integrable N -wave systems. Some of the reduced systems find applications to nonlinear optics.
In this paper we show that there are explicit Yang-Baxter maps with Darboux-Lax representation between Grassmann extensions of algebraic varieties. Motivated by some recent results on noncommutative extensions of Darboux transformations, we first derive a Darboux matrix associated with the Grassmann-extended derivative Nonlinear Schrödinger (DNLS) equation, and then we deduce novel endomorphisms of Grassmann varieties, which possess the Yang-Baxter property. In particular, we present ten-dimensional maps which can be restricted to eight-dimensional Yang-Baxter maps on invariant leaves, related to the Grassmann-extended NLS and DNLS equations. We consider their vector generalisations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.