We describe for the first time the breeding biology and survival of the Alpine Chough Pyrrhocorax graculus in different European massifs (Alps and West-Balkan). When all data were pooled, mean clutch and brood sizes were 3.6 eggs (se = 0.1) and 2.6 chicks (se = 0.1), respectively. Fledging success per pair varied between 1 and 4 fledged young per pair (mean 1.9). Survival of the Alpine Chough was estimated with a capture-resighting model using a colourringed population (n = 315 adults) which used human food sources. Adult survival rate varied from 83 to 92%, depending on the flock. This difference could be a consequence of differences in flock composition. No significant difference was detected between male and female survival. Survival of first-year birds (77%) was lower than that of adults. In order to analyse the effect of human food supplied by tourist activities, breeding success and flock structure were compared between 2 alpine populations which either did or did not exploit human food supplied by tourist activities. No difference was found in breeding success or flock composition between the 2 populations.
Summary The Eurasian Griffon Vulture Gyps fulvus is a large Palearctic, Indohimalayan and Afrotropical Old-World vulture. The species’ range is vast, encompassing territories from the Pyrenees to the Himalayas. We reviewed and analysed a long-term data set for Griffon Vulture in the Balkans to estimate the change in its population size and range between 1980 and 2019. After a large historical decline, the Griffon Vulture population slightly increased in the last 39 years (λ = 1.02) and reached 445–565 pairs in 2019. We recorded a gradual increase of Griffon Vulture subpopulations in Serbia (λ = 1.08 ± 0.003), Bulgaria (λ = 1.08 ± 0.003) and Croatia (λ = 1.05 ± 0.005) and steep to a moderate decline of the species subpopulations in Greece (λ = 0.88 ± 0.005) and North Macedonia (λ = 0.94 ± 0.01). However, species range contracted to half of its former range in the same period. It occurred in 42 UTM squares in the 1980–1990 period and only 20 UTM squares between 2011 and 2019 and concentrated into three source subpopulations in Bulgaria, Serbia, and Croatia. Following reintroductions of the Griffon Vulture in Bulgaria, new colonies were formed at three novel localities after 2010. Regular movements of individuals between the different subpopulations exist nowadays. Therefore, preservation of both current and former core areas used for breeding and roosting is essential for species conservation in the region. However, the Griffon Vulture still faces severe threats and risk of local extinction. Various hazards such as poisoning, collision with energy infrastructure, disturbance and habitat alteration are depleting the status of the Balkan population and its full recovery. Further studies should analyse age-specific survival and mortality, recruitment, genetic relatedness, spatial use to inform the viability of this population in the future.
The knowledge in the behaviour and movement of endangered species is of key importance for the precise targeting and assessing the efficiency of nature conservation actions, especially considering vultures, which explore vast areas to locate ephemeral and unpredictable food resources. Therefore, a total of 51 Griffon Vultures (Gyps fulvus) from both the re-introduced population and the autochthonous Balkan Peninsula (Balkans) colonies have been tagged with GPS/GSM transmitters in recent years, in order to study their seasonal and spatial distribution. The current study presents the analysis of the high-resolution GPS location data, acquired between January 2016 and March 2021. A total of 1,138,383 locations (an average number of 23,716 ± 18,886 positions per bird, ranged between 2,515 and 76,431 of total fixes per bird; n=48) were used to estimate the home range size and identify the traditional foraging areas and roosting sites of the birds during the wintering, migration/roaming and summering periods. Our results reveal that Griffon Vultures movement activity and home range size varied considerably throughout the annual cycle, especially between their wintering and summering grounds, while exhibiting significant overlapping amongst the tracked individuals. Specifically, immature Griffon Vultures travel long distances across all Balkan Peninsula countries, but always gather with conspecifics, showing strong fidelity to active breeding/roosting sites. The total home range 95% area of the Griffon Vulture population on the Balkans was estimated at 39,986.4 km² and the 50% core area at 1,545.42 km² (n = 48). All tracked birds were found to either visit or frequently use (> 95% of the time) the same seven vulture key zones on the Balkan Peninsula – one in Serbia, one shared between North Macedonia and Bulgaria, one shared between Bulgaria and Greece, two entirely lying in Bulgaria, one in western Greece and one shared between Kvarner Archipelago islands in Croatia and the Julian Alps - Italy, Austria and Slovenia. Several smaller sub-zones were also defined within these general ones. The seven key zones form a coherent network and are used as stepping stones for Griffon Vultures during their migration movements and roaming, but also wintering and summering. The observed concentration tendency of Griffon Vultures on the Balkans and the predictability of their temporal and spatial presence should be used to precisely target, address and substantially increase the efficiency of the conservation measures in this marginal and, thus, still vulnerable meta-population.
BackgroundBlood parasites have been studied intensely in many families of avian hosts, but corvids, a particularly cosmopolitan family, remain underexplored. Haemosporidian parasites of the common raven (Corvus corax) have not been studied, although it is the largest, most adaptable, and widespread corvid. Genetic sequence data from parasites of ravens can enhance the understanding of speciation patterns and specificity of haemosporidian parasites in corvids, and shed light how these hosts cope with parasite pressure.MethodsA baited cage trap was used to catch 86 ravens and a nested PCR protocol was used to amplify a 479 bp fragment of the haemosporidian cytochrome b gene from the samples. The obtained sequences were compared with the MalAvi database of all published haemosporidian lineages and a phylogenetic tree including all detected raven parasites was constructed. An examination of blood smears was performed for assessment of infection intensity.ResultsTwenty blood parasite lineages were recovered from ravens caught in a wild population in Bulgaria. The prevalence of generalist Plasmodium lineages was 49%, and the prevalence of Leucocytozoon lineages was 31%. Out of 13 detected Leucocytozoon lineages six were known from different corvids, while seven others seem to be specific to ravens. A phylogenetic reconstruction suggests that Leucocytozoon lineages of ravens and other corvids are not monophyletic, with some groups appearing closely related to parasites of other host families.ConclusionsSeveral different, morphologically cryptic groups of Leucocytozoon parasites appear to infect corvids. Ravens harbour both generalist corvid Leucocytozoon as well as apparently species-specific lineages. The extraordinary breeding ecology and scavenging lifestyle possibly allow ravens to evade vectors and have relatively low blood parasite prevalence compared to other corvids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.