Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.
Passive immunisation using monoclonal antibodies will play a vital role in the fight against COVID-19. Until now, the majority of anti-SARS-CoV-2 antibody discovery efforts have relied on screening B cells of patients in the convalescent phase. Here, we describe deep-mining of the antibody repertoires of hospitalised COVID-19 patients using a combination of phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralising antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded potent neutralising antibodies with distinct mechanisms of action, including the identification of a novel non-ACE2 receptor blocking antibody that is not expected to be affected by any of the major viral variants reported. The study highlighted the presence of potent neutralising antibodies with near germline sequences within both the IgG and IgM pools at early stages of infection. Furthermore, we highlight a highly convergent antibody response with the same sequences occurring both within this study group and also within the responses described in previously published anti-SARS-CoV-2 studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.