Advances in 3D bioprinting have allowed the use of stem cells along with biomaterials and growth factors toward novel tissue engineering approaches. However, the cost of these systems along with their consumables is currently extremely high, limiting their applicability. To address this, we converted a 3D printer into an open source 3D bioprinter and produced a customized bioink based on accessible alginate/gelatin precursors, leading to a cost-effective solution. The bioprinter's resolution, including line width, spreading ratio and extrusion uniformity measurements, along with the rheological properties of the bioinks were analyzed, revealing high bioprinting accuracy within the printability window. Following the bioprinting process, cell survival and proliferation were validated on HeLa Kyoto and HEK293T cell lines. In addition, we isolated and 3D bioprinted postnatal neural stem cell progenitors derived from the mouse subventricular zone as well as mesenchymal stem cells derived from mouse bone marrow. Our results suggest that our low-cost 3D bioprinter can support cell proliferation and differentiation of two different types of primary stem cell populations, indicating that it can be used as a reliable tool for developing efficient research models for stem cell research and tissue engineering.
A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues. This article has an associated First Person interview with the first author of the paper.
The subventricular zone (SVZ) is one of two main niches where neurogenesis persists during adulthood, as it retains neural stem cells (NSCs) with self‐renewal capacity and multi‐lineage potency. Another critical cellular component of the niche is the population of postmitotic multiciliated ependymal cells. Both cell types are derived from radial glial cells that become specified to each lineage during embryogenesis. We show here that GemC1, encoding Geminin coiled‐coil domain‐containing protein 1, is associated with congenital hydrocephalus in humans and mice. Our results show that GemC1 deficiency drives cells toward a NSC phenotype, at the expense of multiciliated ependymal cell generation. The increased number of NSCs is accompanied by increased levels of proliferation and neurogenesis in the postnatal SVZ. Finally, GemC1‐knockout cells display altered chromatin organization at multiple loci, further supporting a NSC identity. Together, these findings suggest that GemC1 regulates the balance between NSC generation and ependymal cell differentiation, with implications for the pathogenesis of human congenital hydrocephalus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.