In-house digital fabrication of low-cost sensors that can on-site and rapidly detect adulteration of alcoholic beverages with sedation drugs (known as date rape drugs, (DRDs)) and analgesics is of great importance for everyday consumers and supervisory authorities. DRDs and analgesics are administrated in spirits for “drug-facilitated sexual assault” crimes and for the reduction of the following day hangover caused by low-quality spirits, respectively. This work describes, a novel “do-it-yourself” wearable 3D printed electrochemical finger (e-finger), which enables direct, rapid, and multianalyte self-testing of the main DRDs (flunitrazepam, scopolamine, ketamine) and paracetamol via direct immersing into a spirit shot. The oxygen interference on flunitrazepam detection was alleviated by dissolving an effervescent tablet of vitamin C in the spirit shot, as ascorbic acid serves as a scavenger for dissolved oxygen. The e-finger can be printed in-house at any size by anyone with access to a low-cost domestic 3D printer using a simple, fast, and low-cost printing procedure. The e-finger is addressed by a smartphone-based miniature potentiostat and allows on-the-spot self-checking of the quality and safety of alcoholic spirits, via a single calibration-free voltammetric measurement, readily performed even by untrained end users. The e-finger is a new powerful screening tool in the hands of supervisory authorities to conduct on-site forensic investigations. More importantly, it paves the way toward in-house e-production of “ready-to-use” reliable self-testing devices.
Zwitterionic polymers have emerged as an important class of hydrophilic polymers and found widespread applications not only in biomedical science but also in nanotechnology as antifouling coatings, drug delivery vesicles...
Zwitterionic polymers are widely employed hydrophilic building blocks for antifouling coatings with numerous applications across a wide range of fields, including but not limited to biomedical science, drug delivery and nanotechnology. Zwitterionic polymers are considered as an attractive alternative to polyethylene glycol because of their enhanced biocompatibility and effectiveness to prevent non-specific protein adsorption and formation of biofilms. To this end, zwitterionic polymers are classified in two categories, namely polybetaines and polyampholytes. Yet, despite a fundamental interest to drive the development of new antifouling materials, the chemical composition of zwitterionic polymer remains severely limited. Here, we propose an entirely new class of antifouling polymers, namely poly(sulfur ylides) belonging to the largely overlooked class of poly(ylides). We show that poly(sulfur ylides) effectively prevent the adhesion of biomolecules and formation of biofilms from pathogenic bacteria. While surface energy analysis reveals strong hydrogen-bond acceptor capabilities of poly(sulfur ylide) and suggests a repellent hydration barrier, membrane damage of pathogenic bacteria induced by poly(sulfur ylides) indicates a killing-by-contact mechanism. Such synergistic effect of poly(sulfur ylides) offers distinct advantages over polyethylene glycol when designing antifouling materials in the future. We expect that our findings will pave the way for the development of a range of ylide-based materials with antifouling properties that have yet to be explored, opening up new innovative directions at the interface of chemistry, biology, and material science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.