RacG is an unusual member of the complex family of Rho GTPases in Dictyostelium. We have generated a knockout (KO) strain, as well as strains that overexpress wild-type (WT), constitutively active (V12), or dominant negative (N17) RacG. The protein is targeted to the plasma membrane, apparently in a nucleotidedependent manner, and induces the formation of abundant actin-driven filopods. RacG is enriched at the rim of the progressing phagocytic cup, and overexpression of RacG-WT or RacG-V12 induced an increased rate of particle uptake. The positive effect of RacG on phagocytosis was abolished in the presence of 50 M LY294002, a phosphoinositide 3-kinase inhibitor, indicating that generation of phosphatidylinositol 3,4,5-trisphosphate is required for activation of RacG. RacG-KO cells showed a moderate chemotaxis defect that was stronger in the RacG-V12 and RacG-N17 mutants, in part because of interference with signaling through Rac1. The in vivo effects of RacG-V12 could not be reproduced by a mutant lacking the Rho insert region, indicating that this region is essential for interaction with downstream components. Processes like growth, pinocytosis, exocytosis, cytokinesis, and development were unaffected in Rac-KO cells and in the overexpressor mutants. In a cell-free system, RacG induced actin polymerization upon GTP␥S stimulation, and this response could be blocked by an Arp3 antibody. While the mild phenotype of RacG-KO cells indicates some overlap with one or more Dictyostelium Rho GTPases, like Rac1 and RacB, the significant changes found in overexpressors show that RacG plays important roles. We hypothesize that RacG interacts with a subset of effectors, in particular those concerned with shape, motility, and phagocytosis.
BackgroundAll human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops).ResultsThe Yersinia pseudotuberculosis virulence factors YopE, YopH, YopM and YopJ were expressed de novo within Dictyostelium and their effects on growth in axenic medium and on bacterial lawns were analyzed. No severe effect was observed for YopH, YopJ and YopM, but expression of YopE, which is a GTPase activating protein for Rho GTPases, was found to be highly detrimental. GFP-tagged YopE expressing cells had less conspicuous cortical actin accumulation and decreased amounts of F-actin. The actin polymerization response upon cAMP stimulation was impaired, although chemotaxis was unaffected. YopE also caused reduced uptake of yeast particles. These alterations are probably due to impaired Rac1 activation. We also found that YopE predominantly associates with intracellular membranes including the Golgi apparatus and inhibits the function of moderately overexpressed RacH.ConclusionThe phenotype elicited by YopE in Dictyostelium can be explained, at least in part, by inactivation of one or more Rho family GTPases. It further demonstrates that the social amoeba Dictyostelium discoideum can be used as an efficient and easy-to-handle model organism in order to analyze the function of a translocated GAP protein of a human pathogen.
Herein, we report a lethal case of the ultra-rare COG6congenital disorder of glycosylation (CDG) presenting with skin manifestations (scaling and erosions) and joint contractures in a neonate of Albanian origin. The patient was homozygous for a COG6 pathogenic variant, previously reported in another three individuals of Greek, Bulgarian and Turkish descent. The presence of a founder mutation in the geographical area is possible. The index case emphasizes the need to consider CDGs in neonatal patients with skin manifestations and joint contractures, particularly patients of Southeastern European or West Asian origin. Herein, we report a case of the ultra-rare conserved oligomeric Golgi complex (COG6)-congenital disorder of glycosylation (CDG) presenting with arachnodactyly, multiple contractures, and skin manifestations. The index individual was the first child of nonconsanguineous parents of Albanian origin with no family history of note. The patient was a girl born at 32 weeks with a birth weight Pediatric Dermatology VERVERI Et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.