We have studied a Fermi system with attractive U(r)-symmetric interaction at the finite temperatures by the quantum field renormalization group (RG) method. The RG functions have been calculated in the framework of dimensional regularization and minimal subtraction scheme up to five loops. It has been found that for r ≥ 4 the RG flux leaves the system's stability region -the system undergoes a first order phase transition. To estimate the temperature of the transition to superconducting or superfluid phase the RG analysis for composite operators has been performed using three-loops approximation. As the result this analysis shows that for 3D systems estimated phase transition temperature is higher then well known theoretical estimations based on continuous phase transition formalism.
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.