Electrochemical, spectroelectrochemical, and theoretical studies of the reduction reactions in nor-β-lapachone derivatives including a nitro redox center showed that reduction of the compounds involves the formation of several radical intermediates, including a biradical dianion resultant from the separate reduction of the quinone and nitro groups in the molecules. Theoretical descriptions of the corresponding Fukui functions f(αα)⁺ and f(ββ)⁺(r) and LUMO densities considering finite differences and frozen core approximations for describing the changes in electron and spin densities of the system allowed us to confirm these results. A description of the potential relationship with the obtained results and biological activity selectivity indexes suggests that both the formation of stable biradical dianion species and the stability of the semiquinone intermediates during further reduction are determining factors in the description of their biological activity.
Impairment of the protein quality control network leads to the accumulation of unfolded and aggregated proteins. Direct detection of unfolded protein accumulation in the cells may provide the possibility for early diagnosis of neurodegenerative diseases. Here a new platform based on a peptide‐conjugated thiol‐reactive aggregation‐induced emission fluorogen (AIEgen), named MI‐BTD‐P (or D1), for labeling and tracking unfolded proteins in cells is reported. In vitro experiments with model proteins show that the non‐fluorescent D1 only becomes highly fluorescent when reacted with the thiol group of free cysteine (Cys) residues on unfolded proteins but not glutathione or folded proteins with buried or surface exposed Cys. When the labeled unfolded proteins form aggregates, D1 fluorescence intensity is further increased, and fluorescence lifetime is prolonged. D1 is then used to measure unfolded protein loads in cells by flow cytometry and track the aggregate formation of the D1 labeled unfolded proteins using confocal microscopy. In combination with fluorescence lifetime imaging technique, the proteome at different folding statuses can be better differentiated, demonstrating the versatility of this new platform. The rational design of D1 demonstrates the outlook of incorporation of diverse functional groups to achieve maximal sensitivity and selectivity in biological samples.
Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.
We report the synthesis, photophysics, electrochemistry and electrochemiluminescence (ECL) of two dqp (dqp=2,6‐di(quinoline‐8‐yl)pyridine) based ruthenium(II) complexes, bearing either a n‐butyl ester (1) or the corresponding carboxylic acid functionality (2). The complexes were prepared from [Ru(dqp)(MeCN)3][PF6]2 by reaction with the dqp precursor using microwave irradiation. In both cases, photoluminescence spectra present strong 3MLCT‐based red/near‐infrared (NIR) emissions centred at about 710 nm. The photoluminescence quantum yields were 6.1 % and 1.8 % for 1 and 2 respectively while the excited state lifetimes were 3.60 μs and 2.37 μs. Both complexes are ECL active, although ECL efficiency (ΦECL) of 1 was substantially higher than 2, due to its more favourable electrochemical properties. Importantly, 1 also gave strong ECL in aqueous media, which is rare for near‐infrared emitters. The results suggest the possibility of very interesting ECL sensing applications for this class of emitter in biological media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.