Our study identified a molecular mechanism for laminar flow-activated LEC proliferation.
The prorenin receptor (PRR) was originally proposed to be a member of the renin-angiotensin system (RAS); however, recent work questioned their association. The present paper describes a functional link between the PRR and RAS in the renal juxtaglomerular apparatus (JGA), a classic anatomical site of the RAS. PRR expression was found in the sensory cells of the JGA, the macula densa (MD), and immunohistochemistry-localized PRR to the MD basolateral cell membrane in mouse, rat, and human kidneys. MD cell PRR activation led to MAP kinase ERK1/2 signaling and stimulation of PGE release, the classic pathway of MD-mediated renin release. Exogenous renin or prorenin added to the in vitro microperfused JGA-induced acute renin release, which was inhibited by removing the MD or by the administration of a PRR decoy peptide. To test the function of MD PRR in vivo, we established a new mouse model with inducible conditional knockout (cKO) of the PRR in MD cells based on neural nitric oxide synthase-driven Cre-lox recombination. Deletion of the MD PRR significantly reduced blood pressure and plasma renin. Challenging the RAS by low-salt diet + captopril treatment caused further significant reductions in blood pressure, renal renin, cyclooxygenase-2, and microsomal PGE synthase expression in cKO vs. wild-type mice. These results suggest that the MD PRR is essential in a novel JGA short-loop feedback mechanism, which is integrated within the classic MD mechanism to control renin synthesis and release and to maintain blood pressure.
Lupus nephritis (LN) is a major organ complication and cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). There is an unmet medical need for developing more efficient and specific, mechanism-based therapies, which depends on improved understanding of the underlying LN pathogenesis. Here we present direct visual evidence from high-power intravital imaging of the local kidney tissue microenvironment in mouse models showing that activated memory T cells originated in immune organs and the LN-specific robust accumulation of the glomerular endothelial glycocalyx played central roles in LN development. The glomerular homing of T cells was mediated via the direct binding of their CD44 to the hyaluronic acid (HA) component of the endothelial glycocalyx, and glycocalyx-degrading enzymes efficiently disrupted homing. Short-course treatment with either hyaluronidase or heparinase III provided long-term organ protection as evidenced by vastly improved albuminuria and survival rate. This glycocalyx/HA/memory T cell interaction is present in multiple SLE-affected organs and may be therapeutically targeted for SLE complications, including LN.
Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy (EM) of rat, rabbit, and human kidney. An elaborate network of major and minor cell processes here named maculapodia were found at the cell base, projecting towards other MD cells and the glomerular vascular pole. The extent of maculapodia showed up-regulation by low dietary salt intake and female gender. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. EM of rat, rabbit, and human kidneys, and three-dimensional (3D) volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and the afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus (JGA) between MD cells and between MD and other target cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.