Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. MethodsWe estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drugresistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. FindingsOn the basis of our predictive statistical models, there were an estimated 4•95 million (3•62-6•57) deaths associated with bacterial AMR in 2019, including 1•27 million (95% UI 0•911-1•71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27•3 deaths per 100 000 (20•9-35•3), and lowest in Australasia, at 6•5 deaths (4•3-9•4) per 100 000. Lower respiratory infections accounted for more than 1•5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3•57 million (2•62-4•78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillinresistant S aureus, caused more than 100 000 deaths attributa...
Summary Background Antimicrobial resistance (AMR) is a serious threat to global public health. WHO emphasises the need for countries to monitor antibiotic consumption to combat AMR. Many low-income and middle-income countries (LMICs) lack surveillance capacity; we aimed to use multiple data sources and statistical models to estimate global antibiotic consumption. Methods In this spatial modelling study, we used individual-level data from household surveys to inform a Bayesian geostatistical model of antibiotic usage in children (aged <5 years) with lower respiratory tract infections in LMICs. Antibiotic consumption data were obtained from multiple sources, including IQVIA, WHO, and the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). The estimates of the antibiotic usage model were used alongside sociodemographic and health covariates to inform a model of total antibiotic consumption in LMICs. This was combined with a single model of antibiotic consumption in high-income countries to produce estimates of antibiotic consumption covering 204 countries and 19 years. Findings We analysed 209 surveys done between 2000 and 2018, covering 284 045 children with lower respiratory tract infections. We identified large national and subnational variations of antibiotic usage in LMICs, with the lowest levels estimated in sub-Saharan Africa and the highest in eastern Europe and central Asia. We estimated a global antibiotic consumption rate of 14·3 (95% uncertainty interval 13·2–15·6) defined daily doses (DDD) per 1000 population per day in 2018 (40·2 [37·2–43·7] billion DDD), an increase of 46% from 9·8 (9·2–10·5) DDD per 1000 per day in 2000. We identified large spatial disparities, with antibiotic consumption rates varying from 5·0 (4·8–5·3) DDD per 1000 per day in the Philippines to 45·9 DDD per 1000 per day in Greece in 2018. Additionally, we present trends in consumption of different classes of antibiotics for selected Global Burden of Disease study regions using the IQVIA, WHO, and ESAC-net input data. We identified large increases in the consumption of fluoroquinolones and third-generation cephalosporins in North Africa and Middle East, and south Asia. Interpretation To our knowledge, this is the first study that incorporates antibiotic usage and consumption data and uses geostatistical modelling techniques to estimate antibiotic consumption for 204 countries from 2000 to 2018. Our analysis identifies both high rates of antibiotic consumption and a lack of access to antibiotics, providing a benchmark for future interventions. Funding Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill & Melinda Gates Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.