a b s t r a c tNucleophosmin (NPM) is a nucleolar protein involved in ribosome biogenesis. NPM1 gene is frequently mutated in acute myeloid leukaemia (AML), correlating with aberrant cytoplasmic localization of the protein. NPM attachment to the nucleolus in physiological conditions probably depends on binding to nucleic acids, and this recognition could be altered in AML. NPM associates to guanine-rich DNA sequences, able to fold as ''G-quadruplexes''. We have analyzed the interaction of pentameric, full length NPM with G-rich oligonucleotides, finding that the protein binds preferentially high-order G-quadruplexes. AML-associated mutation significantly hampers DNA binding, pointing to a possible mechanism contributing to pathological mislocalization of NPM.
The tumor suppressor inhibitor of growth 4 (ING4) regulates chromatin structure by recruiting the histone acetyl transferase complex HBO1 to sites with histone H3 trimethylated at K4. ING4 dimerizes through its N-terminal domain and recognizes H3K4me3 by the C-terminal plant homeodomain (PHD). The central region of ING4 is disordered and contains the nuclear localization signal. Here, utilizing electrophoresis and nuclear magnetic resonance, we show that ING4 binds double-stranded DNA through its central region with micromolar affinity. Our findings suggest that the cooperativity arising from the presence of two DNA-binding regions in the ING4 dimer, as well as two H3K4me3-binding PHD fingers, may strengthen nucleosome binding and HBO1 complex recruitment.
The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.