In this paper, a low resolution Brazilian license plate detection system based on the TV-L1 bilateral superresolution method is proposed. The system is used in uncontrolled environments whose acquisition source is performed in motion to detect license plates using a point of view of a bicycle and a simple cell phone camera. The system is divided in: (i) super-resolution, in which the use of bilateral images from super-resolution videos TV-L1 was used to increase the spatial resolution of the designed database and; (ii) license plate detection, in which digital image processing techniques were used to convert the input image to grayscale and isolate the object of interest, through the morphological operation of closing and the algorithm of flood fill. As a result, the TV-L1 bilateral super-resolution method had an accuracy of 93%, making it a promising approach for future research.
Resumo-Neste artigo, propõem-se dois sistemas para reconhecimento de placas veiculares. O primeiro sistema usa o método do subespaço mútuo e o segundo utiliza CNN. Os sistemas propostos são utilizados em ambientes complexos, caracterizado por veículos em movimento e com variação na iluminação e resolução. Para auxiliar no processo de identificação e localização da placa veicular na imagem são empregadas técnicas de préprocessamento e de detecção de veículos (YOLO). Os resultados obtidos foram promissores, apresentando como acurácia 56% para o método de subespaço mútuo e 99% para o método baseado em redes neurais.Palavras-Chave-Detecção de placas veiculares, método do subespaço, CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.