Despite advances in resting state functional magnetic resonance imaging investigations, clinicians remain with the challenge of how to implement this paradigm on an individualized basis. Here, we assessed the clinical relevance of resting state functional magnetic resonance imaging acquisitions in patients with disorders of consciousness by means of a systems-level approach. Three clinical centres collected data from 73 patients in minimally conscious state, vegetative state/unresponsive wakefulness syndrome and coma. The main analysis was performed on the data set coming from one centre (Liège) including 51 patients (26 minimally conscious state, 19 vegetative state/unresponsive wakefulness syndrome, six coma; 15 females; mean age 49 ± 18 years, range 11-87; 16 traumatic, 32 non-traumatic of which 13 anoxic, three mixed; 35 patients assessed >1 month post-insult) for whom the clinical diagnosis with the Coma Recovery Scale-Revised was congruent with positron emission tomography scanning. Group-level functional connectivity was investigated for the default mode, frontoparietal, salience, auditory, sensorimotor and visual networks using a multiple-seed correlation approach. Between-group inferential statistics and machine learning were used to identify each network's capacity to discriminate between patients in minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Data collected from 22 patients scanned in two other centres (Salzburg: 10 minimally conscious state, five vegetative state/unresponsive wakefulness syndrome; New York: five minimally conscious state, one vegetative state/unresponsive wakefulness syndrome, one emerged from minimally conscious state) were used to validate the classification with the selected features. Coma Recovery Scale-Revised total scores correlated with key regions of each network reflecting their involvement in consciousness-related processes. All networks had a high discriminative capacity (>80%) for separating patients in a minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Among them, the auditory network was ranked the most highly. The regions of the auditory network which were more functionally connected in patients in minimally conscious state compared to vegetative state/unresponsive wakefulness syndrome encompassed bilateral auditory and visual cortices. Connectivity values in these three regions discriminated congruently 20 of 22 independently assessed patients. Our findings point to the significance of preserved abilities for multisensory integration and top-down processing in minimal consciousness seemingly supported by auditory-visual crossmodal connectivity, and promote the clinical utility of the resting paradigm for single-patient diagnostics.
A vast body of literature exists showing functional and structural dysfunction within the brains of patients with disorders of consciousness. However, the function (fluorodeoxyglucose FDG-PET metabolism)-structure (MRI-diffusion-weighted images; DWI) relationship and how it is affected in severely brain injured patients remains ill-defined. FDG-PET and MRI-DWI in 25 severely brain injured patients (19 Disorders of Consciousness of which 7 unresponsive wakefulness syndrome, 12 minimally conscious; 6 emergence from minimally conscious state) and 25 healthy control subjects were acquired here. Default mode network (DMN) function-structure connectivity was assessed by fractional anisotropy (FA) and metabolic standardized uptake value (SUV). As expected, a profound decline in regional metabolism and white matter integrity was found in patients as compared with healthy subjects. Furthermore, a function-structure relationship was present in brain-damaged patients between functional metabolism of inferior-parietal, precuneus, and frontal regions and structural integrity of the frontal-inferiorparietal, precuneus-inferiorparietal, thalamo-inferioparietal, and thalamofrontal tracts. When focusing on patients, a stronger relationship between structural integrity of thalamoinferiorparietal tracts and thalamic metabolism in patients who have emerged from the minimally conscious state as compared with patients with disorders of consciousness was found. The latter finding Additional Supporting Information may be found in the online version of this article.
Background: After an occurrence of a Near-Death Experience (NDE), Near-Death Experiencers (NDErs) usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area.Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives) as well as the most frequently reported temporality sequences of features.Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32). A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features.Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs.Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon.
Given the fact that clinical bedside examinations can have a high rate of misdiagnosis, machine learning techniques based on neuroimaging and electrophysiological measurements are increasingly being considered for comatose patients and patients with unresponsive wakefulness syndrome, a minimally conscious state or locked-in syndrome. Machine learning techniques have the potential to move from group-level statistical results to personalized predictions in a clinical setting. They have been applied for the purpose of (1) detecting changes in brain activation during functional tasks, equivalent to a behavioral command-following test and (2) estimating signs of consciousness by analyzing measurement data obtained from multiple subjects in resting state. In this review, we provide a comprehensive overview of the literature on both approaches and discuss the translation of present findings to clinical practice. We found that most studies struggle with the difficulty of establishing a reliable behavioral assessment and fluctuations in the patient's levels of arousal. Both these factors affect the training and validation of machine learning methods to a considerable degree. In studies involving more than 50 patients, small to moderate evidence was found for the presence of signs of consciousness or good outcome, where one study even showed strong evidence for good outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.