Abstract-Multimodal streams of sensory information are naturally parsed and integrated by humans using signal-level feature extraction and higher-level cognitive processes. Detection of attention-invoking audiovisual segments is formulated in this work on the basis of saliency models for the audio, visual and textual information conveyed in a video stream. Aural or auditory saliency is assessed by cues that quantify multifrequency waveform modulations, extracted through nonlinear operators and energy tracking. Visual saliency is measured through a spatiotemporal attention model driven by intensity, color and orientation. Textual or linguistic saliency is extracted from partof-speech tagging on the subtitles information available with most movie distributions. The individual saliency streams, obtained from modality-depended cues, are integrated in a multimodal saliency curve, modeling the time-varying perceptual importance of the composite video stream and signifying prevailing sensory events. The multimodal saliency representation forms the basis of a generic, bottom-up video summarization algorithm. Different fusion schemes are evaluated on a movie database of multimodal saliency annotations with comparative results provided across modalities. The produced summaries, based on low-level features and content-independent fusion and selection, are of subjectively high aesthetic and informative quality.
In this work we approach the analysis and segmentation of natural textured images by combining ideas from image analysis and probabilistic modeling. We rely on AM-FM texture models and specifically on the Dominant Component Analysis (DCA) paradigm for feature extraction. This method provides a low-dimensional, dense and smooth descriptor, capturing essential aspects of texture, namely scale, orientation, and contrast. Our contributions are at three levels of the texture analysis and segmentation problems: First, at the feature extraction stage we propose a Regularized Demodulation Algorithm that provides more robust texture features and explore the merits of modifying the channel selection criterion of DCA. Second, we propose a probabilistic interpretation of DCA and Gabor filtering in general, in terms of Local Generative Models. Extending this point of view to edge detection facilitates the estimation of posterior probabilities for the edge and texture classes. Third, we propose the Weighted Curve Evolution scheme that enhances the Region Competition/ Geodesic Active Regions methods by allowing for the locally adaptive fusion of heterogeneous cues. Our segmentation results are evaluated on the Berkeley Segmentation Benchmark, and compare favorably to current state-of-the-art methods.
Detection of perceptually important video events is formulated here on the basis of saliency models for the audio, visual and textual information conveyed in a video stream. Audio saliency is assessed by cues that quantify multifrequency waveform modulations, extracted through nonlinear operators and energy tracking. Visual saliency is measured through a spatiotemporal attention model driven by intensity, color and motion. Text saliency is extracted from part-of-speech tagging on the subtitles information available with most movie distributions. The various modality curves are integrated in a single attention curve, where the presence of an event may be signified in one or multiple domains. This multimodal saliency curve is the basis of a bottom-up video summarization algorithm, that refines results from unimodal or audiovisual-based skimming. The algorithm performs favorably for video summarization in terms of informativeness and enjoyability.
Research related to computational modeling for machine-based understanding requires ground truth data for training, content analysis, and evaluation. In this paper, we present a multimodal video database, namely COGNIMUSE, annotated with sensory and semantic saliency, events, cross-media semantics, and emotion. The purpose of this database is manifold; it can be used for training and evaluation of event detection and summarization algorithms, for classification and recognition of audio-visual and cross-media events, as well as for emotion tracking. In order to enable comparisons with other computational models, we propose state-of-the-art algorithms, specifically a unified energy-based audio-visual framework and a method for text saliency computation, for the detection of perceptually salient events from videos. Additionally, a movie summarization system for the automatic production of summaries is presented. Two kinds of evaluation were performed, an objective based on the saliency annotation of the database and an extensive qualitative human evaluation of the automatically produced summaries, where we investigated what composes high-quality movie summaries, where both methods verified the appropriateness of the proposed methods. The annotation of the database and the code for the summarization system can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.