A total of 8,988 trauma patients were included, of whom 854 died (9.5%). The TRISS MTOS displayed excellent discrimination with an area under the curve (AUC) of 0.912 (95% CI 0.902-0.923) and comparable with TRISS NTDB (AUC = 0.908, 95% CI 0.897-0.919, p = .1195). Calibration of both models was poor (Hosmer-Lemeshow test p < .001), tending to underestimate the probability of mortality across almost all risk groups. The TRISS GrTD resulted in statistically significant improvement in discrimination (AUC = 0.927, 95% CI 0.918-0.936, p < .0001) and acceptable calibration (Hosmer-Lemeshow test p = .113).
CONCLUSION:In this cohort of Greek trauma patients, the performance of the original TRISS was suboptimal, and there was no evidence that it has benefited from its latest revision. By contrast, a strong case exists for supporting a locally recalibrated version to render the TRISS applicable for mortality prediction and performance benchmarking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.