This paper introduces Crescando: a scalable, distributed relational table implementation designed to perform large numbers of queries and updates with guaranteed access latency and data freshness. To this end, Crescando leverages a number of modern query processing techniques and hardware trends. Specifically, Crescando is based on parallel, collaborative scans in main memory and so-called "querydata" joins known from data-stream processing. While the proposed approach is not always optimal for a given workload, it provides latency and freshness guarantees for all workloads. Thus, Crescando is particularly attractive if the workload is unknown, changing, or involves many different queries. This paper describes the design, algorithms, and implementation of a Crescando storage node, and assesses its performance on modern multi-core hardware.
As a result of increases in both the query load and the data managed, as well as changes in hardware architecture (multicore), the last years have seen a shift from query-at-a-time approaches towards shared work (SW) systems where queries are executed in groups. Such groups share operators like scans and joins, leading to systems that process hundreds to thousands of queries in one go.SW systems range from storage engines that use in-memory cooperative scans to more complex query processing engines that share joins over analytical and star schema queries. In all cases, they rely on either single query optimizers, predicate sharing, or on manually generated plans. In this paper we explore the problem of shared workload optimization (SWO) for SW systems. The challenge in doing so is that the optimization has to be done for the entire workload and that results in a class of stochastic knapsack with uncertain weights optimization, which can only be addressed with heuristics to achieve a reasonable runtime. In this paper we focus on hash joins and shared scans and present a first algorithm capable of optimizing the execution of entire workloads by deriving a global executing plan for all the queries in the system. We evaluate the optimizer over the TPC-W and the TPC-H benchmarks. The results prove the feasibility of this approach and demonstrate the performance gains that can be obtained from SW systems.
This demonstration presents SharedDB, an implementation of a relational database system capable of executing all SQL operators by sharing computation and resources across all running queries. SharedDB sidesteps the traditional queryat-a-time approach and executes queries in batches. Unlike proposed multi-query optimization ideas, in SharedDB queries do not have to contain common subexpressions in order to be part of the same batch, which allows for a higher degree of sharing. By sharing as much as possible, SharedDB avoids repeating parts of computation that is common across all running queries. The goal of this demonstration is to show the ability of shared query execution to a) answer complex and diverse workloads, and b) reduce the interaction among concurrently executed queries that is observed in traditional systems and leads to performance deterioration and instabilities.
Traditional database systems are built around the query-at-a-time model. This approach tries to optimize performance in a best-effort way. Unfortunately, best effort is not good enough for many modern applications. These applications require response time guarantees in high load situations. This paper describes the design of a new database architecture that is based on batching queries and shared computation across possibly hundreds of concurrent queries and updates. Performance experiments with the TPC-W benchmark show that the performance of our implementation, SharedDB, is indeed robust across a wide range of dynamic workloads.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.