This paper presents a linear spring-based element formulation for computation of vibrational characteristics of single-walled carbon nanotubes (CNTs). Three-dimensional nanoscale elements and corresponding elemental equations are developed for the numerical treatment of the dynamic behaviour of single-walled CNTs, including appropriate stiffness and mass characteristics. The atomistic microstructure of nanotubes is used to assemble the elemental equations and construct the dynamic equilibrium equation. The developed elements simulate the relative translations and rotations between atoms as well as the mass of the atoms. In this way, molecular mechanics theory can be applied directly because the atomic bonds are modelled by using exclusively physical variables such as bond stretching. The modelling is regenerative and can provide simulations for different geometric characteristics of the nanotubes. Numerical results are presented that illustrates new natural frequencies and mode shapes, going beyond the usual ones for various nanotubes under different support conditions and defects. Comparisons with corresponding numerical predictions from the literature, where they are possible, show very good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.