We propose a novel class of convex risk measures, based on the concept of the Fréchet mean, designed in order to handle uncertainty which arises from multiple information sources regarding the risk factors of interest. The proposed risk measures robustly characterize the exposure of the firm, by filtering out appropriately the partial information available in individual sources into an aggregate model for the risk factors of interest. Importantly, the proposed risks can be expressed in closed analytic forms allowing for interesting qualitative interpretations as well as comparative statics and thus facilitate their use in the everyday risk management process of the insurance firms. The potential use of the proposed risk measures in insurance is illustrated by two concrete applications, capital risk allocation and premia calculation under uncertainty.
The operation of buildings is linked to approximately 36% of the global energy consumption, 40% of greenhouse gas emissions, and climate change. Assessing the energy consumption and efficiency of buildings is a complex task addressed by a variety of methods. Building energy modeling is among the dominant methodologies in evaluating the energy efficiency of buildings commonly applied for evaluating design and renovation energy efficiency measures. Although building energy modeling is a valuable tool, it is rarely the case that simulation results are assessed against the building’s actual energy performance. In this context, the simulation results of the HVAC energy consumption in the case of a smart industrial near-zero energy building are used to explore areas of uncertainty and deviation of the building energy model against measured data. Initial model results are improved based on a trial and error approach to minimize deviation based on key identified parameters. In addition, a novel approach based on functional shape modeling and Kalman filtering is developed and applied to further minimize systematic discrepancies. Results indicate a significant initial performance gap between the initial model and the actual energy consumption. The efficiency and the effectiveness of the developed integrated model is highlighted.
In this work, a functional supervised learning scheme is proposed for the classification of subjects into normotensive and hypertensive groups, using solely the 24-hour blood pressure data, relying on the concepts of Fréchet mean and Fréchet variance for appropriate deformable functional models for the blood pressure data. The schemes are trained on real clinical data, and their performance was assessed and found to be very satisfactory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.