BACKGROUNDIschemic heart disease is a major cause of out-of-hospital cardiac arrest. The role of immediate coronary angiography and percutaneous coronary intervention (PCI) in the treatment of patients who have been successfully resuscitated after cardiac arrest in the absence of ST-segment elevation myocardial infarction (STEMI) remains uncertain. METHODSIn this multicenter trial, we randomly assigned 552 patients who had cardiac arrest without signs of STEMI to undergo immediate coronary angiography or coronary angiography that was delayed until after neurologic recovery. All patients underwent PCI if indicated. The primary end point was survival at 90 days. Secondary end points included survival at 90 days with good cerebral performance or mild or moderate disability, myocardial injury, duration of catecholamine support, markers of shock, recurrence of ventricular tachycardia, duration of mechanical ventilation, major bleeding, occurrence of acute kidney injury, need for renal-replacement therapy, time to target temperature, and neurologic status at discharge from the intensive care unit. RESULTSAt 90 days, 176 of 273 patients (64.5%) in the immediate angiography group and 178 of 265 patients (67.2%) in the delayed angiography group were alive (odds ratio, 0.89; 95% confidence interval [CI], 0.62 to 1.27; P = 0.51). The median time to target temperature was 5.4 hours in the immediate angiography group and 4.7 hours in the delayed angiography group (ratio of geometric means, 1.19; 95% CI, 1.04 to 1.36). No significant differences between the groups were found in the remaining secondary end points. CONCLUSIONSAmong patients who had been successfully resuscitated after out-of-hospital cardiac arrest and had no signs of STEMI, a strategy of immediate angiography was not found to be better than a strategy of delayed angiography with respect to overall survival at 90 days. (Funded by the Netherlands Heart Institute and others; COACT Netherlands Trial Register number, NTR4973.
Aims While most patients with myocardial infarction (MI) have underlying coronary atherosclerosis, not all patients with coronary artery disease (CAD) develop MI. We sought to address the hypothesis that some of the genetic factors which establish atherosclerosis may be distinct from those that predispose to vulnerable plaques and thrombus formation. Methods and results We carried out a genome-wide association study for MI in the UK Biobank (n∼472 000), followed by a meta-analysis with summary statistics from the CARDIoGRAMplusC4D Consortium (n∼167 000). Multiple independent replication analyses and functional approaches were used to prioritize loci and evaluate positional candidate genes. Eight novel regions were identified for MI at the genome wide significance level, of which effect sizes at six loci were more robust for MI than for CAD without the presence of MI. Confirmatory evidence for association of a locus on chromosome 1p21.3 harbouring choline-like transporter 3 (SLC44A3) with MI in the context of CAD, but not with coronary atherosclerosis itself, was obtained in Biobank Japan (n∼165 000) and 16 independent angiography-based cohorts (n∼27 000). Follow-up analyses did not reveal association of the SLC44A3 locus with CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a broad array of metabolites, including choline, trimethylamine N-oxide, and betaine. However, aortic expression of SLC44A3 was increased in carriers of the MI risk allele at chromosome 1p21.3, increased in ischaemic (vs. non-diseased) coronary arteries, up-regulated in human aortic endothelial cells treated with interleukin-1β (vs. vehicle), and associated with smooth muscle cell migration in vitro. Conclusions A large-scale analysis comprising ∼831 000 subjects revealed novel genetic determinants of MI and implicated SLC44A3 in the pathophysiology of vulnerable plaques.
After a median follow-up of 3.8 years, all DES demonstrated superior efficacy compared with BMS. Among DES, second-generation devices have substantially improved long-term safety and efficacy outcomes compared with first-generation devices.
Rationale: Proangiogenic hematopoietic and endothelial progenitor cells (EPCs) contribute to postnatal neovascularization, but the mechanisms regulating differentiation to the endothelial lineage are unclear.Objective: To elucidate the epigenetic control of endothelial gene expression in proangiogenic cells and EPCs. Methods and Results: Here we demonstrate that the endothelial nitric oxide synthase (eNOS) promoter is epigenetically silenced in proangiogenic cells (early EPCs), CD34؉ cells, and mesoangioblasts by DNA methylation and prominent repressive histone H3K27me3 marks. In order to reverse epigenetic silencing to facilitate endothelial commitment, we used 3-deazaneplanocin A, which inhibits the histone methyltransferase enhancer of zest homolog 2 and, thereby, reduces H3K27me3. 3-Deazaneplanocin A was not sufficient to increase eNOS expression, but the combination of 3-deazaneplanocin A and the histone deacetylase inhibitor Trichostatin A augmented eNOS expression, indicating that the concomitant inhibition of silencing histone modification and enhancement of activating histone modification facilitates eNOS expression. In ischemic tissue, hypoxia plays a role in recruiting progenitor cells. Therefore, we examined the effect of hypoxia on epigenetic modifications. Hypoxia modulated the balance of repressive to active histone marks and increased eNOS mRNA expression. The reduction of repressive H3K27me3 was associated with an increase of the histone demethylase Jmjd3. Silencing of Jmjd3 induced apoptosis and senescence in proangiogenic cells and inhibited hypoxia-mediated up-regulation of eNOS expression in mesoangioblasts. Key Words: Jmjd3 Ⅲ eNOS Ⅲ hypoxia Ⅲ proangiogenic cells E ndothelial or hematopoietic progenitor cells contribute to vascular repair and postnatal neovascularization. Administration of progenitor cells augmented neovascularization and functional recovery after critical ischemia studies. 1 However, the mechanisms underlying the beneficial effect of progenitor cells are unclear, and it is still intensely debated whether endothelial and hematopoietic progenitor cells can undergo differentiation toward the endothelial lineage and incorporate into newly formed blood vessels. 2 The basal mechanisms for endothelial specification and endotheliumspecific gene expression are poorly understood and an endothelial-specific master regulator has yet to be identified. Obviously, many transcription factors such as members of Ets, GATA, and forkhead families play a key role in endothelial gene activation and unique combinational regulation of multiple transcription factors is required for endothelial specification and differentiation. However, many of these transcription factors implicated in vasculogenesis are also expressed in nonendothelial cells like hematopoietic stem cells but are not sufficient to activate endothelial genes. 3 Likewise, expression of the prototypical gene endothelial NO synthase (eNOS) is controlled by a variety of transcription factors such as Sp-1, Ets-1, and YY1, but these tr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.