We compute the apparent hydrodynamic slip length for (laminar and fully developed) Poiseuille flow of liquid through a heated parallel-plate channel. One side of the channel is textured with parallel (streamwise) ridges and the opposite one is smooth. On the textured side of the channel, the liquid is in the Cassie state. No-slip and constant heat flux boundary conditions are imposed at the solid–liquid interfaces along the tips of the ridges, and the menisci between ridges are considered to be flat and adiabatic. The smooth side of the channel is subjected to no-slip and adiabatic boundary conditions. We account for the streamwise and transverse thermocapillary stresses along menisci. When the latter is sufficiently small, Stokes flow may be assumed. Then, our solution is based upon a conformal map. When, additionally, the ratio of channel height to half of the ridge pitch is of order 1 or larger, an accurate but less cumbersome solution follows from a matched asymptotic expansion. When inertial effects are relevant, the slip length is numerically computed. Setting the thermocapillary stress equal to zero yields the slip length for an adiabatic flow.
We consider convective heat transfer for laminar flow of liquid between parallel plates. The configurations analyzed are both plates textured with symmetrically aligned isothermal ridges oriented parallel to the flow, and one plate textured as such and the other one smooth and adiabatic. The liquid is assumed to be in the Cassie state on the textured surface(s) to which a mixed boundary condition of no-slip on the ridges and no-shear along flat menisci applies. The thermal energy equation is subjected to a mixed isothermal-ridge and adiabatic-meniscus boundary condition on the textured surface(s). We solve for the developing three-dimensional temperature profile resulting from a step change of the ridge temperature in the streamwise direction assuming a hydrodynamically developed flow. Axial conduction is accounted for, i.e., we consider the extended Graetz-Nusselt problem; therefore, the domain is of infinite length. The effects of viscous dissipation and (uniform) volumetric heat generation are also captured. Using the method of separation of variables, the homogeneous part of the thermal problem is reduced to a nonlinear eigenvalue problem in the transverse coordinates which is solved numerically. Expressions derived for the local and the fully developed Nusselt number along the ridge and that averaged over the composite interface in terms of the eigenvalues, eigenfunctions, Brinkman number, and dimensionless volumetric heat generation rate. Estimates are provided for the streamwise location where viscous dissipation effects become important.
We analytically consider the effect of meniscus curvature on heat transfer to laminar flow across structured surfaces. The surfaces considered are composed of ridges. Curvature of the menisci, which separates liquid in the Cassie state and gas trapped in cavities between the ridges, results from the pressure difference between the liquid and the gas. A boundary perturbation approach is used to develop expressions that account for the change in the temperature field in the limit of small curvature of a meniscus. The meniscus is considered adiabatic and a constant heat flux boundary condition is prescribed at the tips of the ridges in a semi-infinite and periodic domain. A solution for a constant temperature ridge is also presented using existing results from a mathematically equivalent hydrodynamic problem. We provide approximate expressions for the apparent thermal slip length as function of solid fraction over a range of small meniscus protrusion angles. Numerical results show good agreement with the perturbation results for protrusion angles up to ± 20 deg.
We develop a one-dimensional model for transient diffusion of gas between ridges into a quiescent liquid suspended in the Cassie state above them. In the first case study, we assume that the liquid and gas are initially at the same pressure and that the liquid column is sealed at the top. In the second one, we assume that the gas initially undergoes isothermal compression and that the liquid column is exposed to gas at the top. Our model provides a framework to compute the transient gas concentration field in the liquid, the time when the triple contact line begins to move down the ridges, and the time when menisci reach the bottom of the substrate compromising the Cassie state. At illustrative conditions, we show the effects of geometry, hydrostatic pressure, and initial gas concentration on the Cassie to Wenzel state transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.