Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we provide an overview of the strategies currently being used to increase maturation in culture, which include prolongation of time in culture, exposure to electrical stimulation, application of mechanical strain, growth in three-dimensional tissue configuration, addition of non-cardiomyocytes, use of hormones and small molecules, and alteration of the extracellular environment. By comparing the outcomes of these studies, we identify the approaches most likely to improve functional maturation of hPSC-CMs in terms of their electrophysiology and excitation-contraction coupling.
SummaryMaximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC) model of hypertrophic cardiomyopathy (HCM). A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.
Genetic causes of many familial arrhythmia syndromes remain elusive. In this study, whole‐exome sequencing (WES) was carried out on patients from three different families that presented with life‐threatening arrhythmias and high risk of sudden cardiac death (SCD). Two French Canadian probands carried identical homozygous rare variant in TECRL gene (p.Arg196Gln), which encodes the trans‐2,3‐enoyl‐CoA reductase‐like protein. Both patients had cardiac arrest, stress‐induced atrial and ventricular tachycardia, and QT prolongation on adrenergic stimulation. A third patient from a consanguineous Sudanese family diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT) had a homozygous splice site mutation (c.331+1G>A) in TECRL. Analysis of intracellular calcium ([Ca2+]i) dynamics in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) generated from this individual (TECRLH
om‐hiPSCs), his heterozygous but clinically asymptomatic father (TECRLH
et‐hiPSCs), and a healthy individual (CTRL‐hiPSCs) from the same Sudanese family, revealed smaller [Ca2+]i transient amplitudes as well as elevated diastolic [Ca2+]i in TECRLH
om‐hiPSC‐CMs compared with CTRL‐hiPSC‐CMs. The [Ca2+]i transient also rose markedly slower and contained lower sarcoplasmic reticulum (SR) calcium stores, evidenced by the decreased magnitude of caffeine‐induced [Ca2+]i transients. In addition, the decay phase of the [Ca2+]i transient was slower in TECRLH
om‐hiPSC‐CMs due to decreased SERCA and NCX activities. Furthermore, TECRLH
om‐hiPSC‐CMs showed prolonged action potentials (APs) compared with CTRL‐hiPSC‐CMs. TECRL knockdown in control human embryonic stem cell‐derived CMs (hESC‐CMs) also resulted in significantly longer APs. Moreover, stimulation by noradrenaline (NA) significantly increased the propensity for triggered activity based on delayed afterdepolarizations (DADs) in TECRLH
om‐hiPSC‐CMs and treatment with flecainide, a class Ic antiarrhythmic drug, significantly reduced the triggered activity in these cells. In summary, we report that mutations in TECRL are associated with inherited arrhythmias characterized by clinical features of both LQTS and CPVT. Patient‐specific hiPSC‐CMs recapitulated salient features of the clinical phenotype and provide a platform for drug screening evidenced by initial identification of flecainide as a potential therapeutic. These findings have implications for diagnosis and treatment of inherited cardiac arrhythmias.
SummaryDiminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.