In an ultrafast laser-induced magnetization-dynamics scenario we demonstrate for the first time an exact microscopic spin-switch mechanism. Combining ab initio electronic many-body theory and quantum optics analysis we show in detail how the coherently induced material polarization for every elementary process leads to angular-momentum exchange between the light and the irradiated antiferromagnetic NiO. Thus we answer the long-standing question where the angular momentum goes. The calculation also predicts a dynamic Kerr effect, which provides a signature for monitoring spin dynamics, by simply measuring the transient rotation and ellipticity of the reflected light.
In this Letter we develop a new systematic approach to study optical second harmonic generation in NiO, on both the (001) surface and the bulk. NiO is modeled as a doubly embedded cluster on which two highly correlated quantum chemistry methods are applied in order to obtain the wave functions of all the intragap d states and the low lying charge transfer states. The optical gap is calculated and the electric dipole, magnetic dipole, and electric quadrupole contributions to the second order susceptibility tensor are computed for the first time from first principles. Going beyond the electric dipole approximation gives new insight into the experimentally observed spectrum. A method is proposed for monitoring the spin dynamics of the NiO(001) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.