A single-copy extensin gene (atExt1) has been isolated from Arabidopsis thaliana (L.) Heynh. The deduced amino acid sequence consists of 374 amino acids which are organised into highly ordered repeating blocks in which Ser(Pro)4 and Ser(Pro)3 motifs alternate. Two copies of the Tyr-X-Tyr-Lys motif and 13 copies of the Val-Tyr-Lys motif are present, showing that this extensin may be highly cross-linked, possessing the capacity for both intra and inter-molecular bond formation. The gene atExt1 is normally expressed in the root and is silent in the leaf; wounding reverses this pattern, turning on the gene in the leaf and repressing it in the root. The promoter contains motifs which have been found to activate plant defence genes in response to salicylic acid, abscisic acid and methyl jasmonate; when these compounds are applied to the roots, the atExt1 gene is activated in the leaf.
Although mitogen-activated protein kinases (MAPKs) have been shown to be activated by a wide range of biotic and abiotic stimuli in diverse plant species, few in vivo substrates for these kinases have been identified. While studying proteins that are differentially phosphorylated upon treatment of Arabidopsis suspension cultures with the general bacterial elicitor peptide flagellin-22 (flg22), we identified two proteins with endogenous nickel binding properties that become phosphorylated after flg22 elicitation. These highly related proteins, AtPHOS32 and AtPHOS34, show similarity to bacterial universal stress protein A. We identified one of the phosphorylation sites on AtPHOS32 by nanoelectrospray ionization tandem mass spectrometry. Phosphorylation in a phosphoSer-Pro motif indicated that this protein may be a substrate of MAPKs. Using in vitro kinase assays, we confirmed that AtPHOS32 is a substrate of both AtMPK3 and AtMPK6. Specificity of phosphorylation was demonstrated by site-directed mutagenesis of the first phosphorylation site. In addition, immunosubtraction of both MAPKs from protein extracts removed detectable kinase activity toward AtPHOS32, indicating that the two MAPKs were the predominate kinases recognizing the motif in this protein. Finally, the target phosphorylation site in AtPHOS32 is conserved in AtPHOS34 and among apparent orthologues from many plant species, indicating that phosphorylation of these proteins by AtMPK3 and AtMPK6 orthologues has been conserved throughout evolution.Plants recognize potential microbial pathogens through microbial-associated molecular patterns (MAMPs; 5 1, 2).MAMP perception by defined host cell surface receptors initiates MAMP-triggered immunity, the first line of defense contributing to the arrest of microbial growth. The best characterized MAMP perception system in plants is the recognition of bacterial flagellin or flg22, the bioactive peptide from a highly conserved 22-amino-acid region of the protein (3), by the receptor kinase flagellin-sensitive 2 (FLS2) (4). Recognition of flg22 by FLS2 initiates intracellular signaling that results in a number of rapid responses thought to contribute to defense(s) against the invading microbe (5).Among the most studied of these early responses is the rapid activation of mitogen-activated protein kinases (MAPKs). MAPKs are the final components of signaling cascades, activated by upstream MAPK kinases (MAPKKs), which are also activated by other upstream kinases, MAPKK kinases (MAPKKKs) (6 -8). In Arabidopsis, flg22 has been shown to activate two MAPKs, AtMPK3 and AtMPK6 (9, 10). Moreover, plants with reduced levels of AtMPK6 displayed increased susceptibility to infection by virulent and avirulent strains of the bacterial pathogen, Pseudomonas syringae, indicating that signaling via AtMPK6 plays a critical role during defense responses (11).Although activation of MAPKs in response to a wide range of biotic and abiotic stimuli has been well characterized (8), relatively little is known about the substrates of these kin...
A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.