Although humans are generally capable of distinguishing single events of pain or touch, recent research suggested that both modalities activate a network of similar brain regions. By contrast, less attention has been paid to which processes uniquely contribute to each modality. The present study investigated the neuronal oscillations that enable a subject to process pain and touch as well as to evaluate the intensity of both modalities by means of Electroencephalography. Nineteen healthy subjects were asked to rate the intensity of each stimulus at single trial level. By computing Linear mixed effects models (LME) encoding of both modalities was explored by relating stimulus intensities to brain responses. While the intensity of single touch trials is encoded only by theta activity, pain perception is encoded by theta, alpha and gamma activity. Beta activity in the tactile domain shows an on/off like characteristic in response to touch which was not observed in the pain domain. Our results enhance recent findings pointing to the contribution of different neuronal oscillations to the processing of nociceptive and tactile stimuli.
The role of attentional processes in the integration of input from different sensory modalities is complex and multifaceted. Importantly, little is known about how simple, non-linguistic stimuli are integrated when the resources available for sensory processing are exhausted. We studied this question by examining multisensory integration under conditions of limited endogenous attentional resources. Multisensory integration was assessed through the sound-induced flash illusion (SIFI), in which a flash presented simultaneously with two short auditory beeps is often perceived as two flashes, while cognitive load was manipulated using an n-back task. A one-way repeated measures ANOVA revealed that increased cognitive demands had a significant effect on the perception of the illusion while post-hoc tests showed that participants’ illusion perception was increased when attentional resources were limited. Additional analysis demonstrated that this effect was not related to a response bias. These findings provide evidence that the integration of non-speech, audiovisual stimuli is enhanced under reduced attentional resources and it therefore supports the notion that top-down attentional control plays an essential role in multisensory integration.
Integrating information across different senses is a central feature of human perception. Previous research suggests that multisensory integration is shaped by a context-dependent and largely adaptive interplay between stimulus-driven bottom-up and top-down endogenous influences. One critical question concerns the extent to which this interplay is sensitive to the amount of available cognitive resources. In the present study, we investigated the influence of limited cognitive resources on audiovisual integration by measuring high-density electroencephalography (EEG) in healthy participants performing the soundinduced flash illusion (SIFI) and a verbal n-back task (0-back, low load and 2-back, high load) in a dual-task design. In the SIFI, the integration of a flash with two rapid beeps can induce the illusory perception of two flashes. We found that high compared with low load increased illusion susceptibility and modulated neural oscillations underlying illusion-related crossmodal interactions. Illusion perception under high load was associated with reduced early b power (18-26 Hz, ;70 ms) in auditory and motor areas, presumably reflecting an early mismatch signal and subsequent top-down influences including increased frontal h power (7-9 Hz, ;120 ms) in mid-anterior cingulate cortex (ACC) and a later b power suppression (13-22 Hz, ;350 ms) in prefrontal and auditory cortex. Our study demonstrates that integrative crossmodal interactions underlying the SIFI are sensitive to the amount of available cognitive resources and that multisensory integration engages top-down h and b oscillations when cognitive resources are scarce.
Symptoms of schizophrenia (SCZ) are likely to be generated by genetically mediated synaptic dysfunction, which contribute to large-scale functional neural dysconnectivity. Recent electrophysiological studies suggest that this dysconnectivity is present not only at a spatial level but also at a temporal level, operationalized as long-range temporal correlations (LRTCs). Previous research suggests that alpha and beta frequency bands have weaker temporal stability in people with SCZ. This study sought to replicate these findings with high-density electroencephalography (EEG), enabling a spatially more accurate analysis of LRTC differences, and to test associations with characteristic SCZ symptoms and cognitive deficits. A 128-channel EEG was used to record eyes-open resting state brain activity of 23 people with SCZ and 24 matched healthy controls (HCs). LRTCs were derived for alpha (8–12 Hz) and beta (13–25 Hz) frequency bands. As an exploratory analysis, LRTC was source projected using sLoreta. People with SCZ showed an area of significantly reduced beta-band LRTC compared with HCs over bilateral posterior regions. There were no between-group differences in alpha-band activity. Individual symptoms of SCZ were not related to LRTC values nor were cognitive deficits. The study confirms that people with SCZ have reduced temporal stability in the beta frequency band. The absence of group differences in the alpha band may be attributed to the fact that people had, in contrast to previous studies, their eyes open in the current study. Taken together, our study confirms the utility of LRTC as a marker of network instability in people with SCZ and provides a novel empirical perspective for future examinations of network dysfunction salience in SCZ research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.