Monolayer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies for the hBN nucleation process of ∼5 eV and crystal growth of ∼3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.
The nature of water in acid-form Nafion 117 was quantified at several hydration levels by dielectric relaxation spectroscopy. Two independent experimental setups were used to collect complex dielectric permittivity spectra at low frequencies ͑0.01 Hz to 1 MHz at −80 to 25°C͒ and in the microwave region ͑0.40-26 GHz at 25-45°C͒. We directly observed the states of water, manifested through three population averages with distinctly resolved dynamical behaviors, and their changes with temperature and hydration level. The fastest process observed was identified as the cooperative picosecond relaxation of free ͑isotropic, bulklike͒ water, whereas the slowest process ͑microsecond relaxation times͒ corresponded to water molecules strongly bound to the charged sulfonic groups. A third type of water was also observed, also characterized by picosecond relaxation times, close to and about three times slower than those of bulk water, which was attributed to loosely bound water and may contain substantial dynamical heterogeneities.
Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter.nanofabrication | superhydrophobic | networks
Nanocomposite formation, through the incorporation of high aspect ratio nanoparticles, has been proven to enhance the dielectric properties of thermoplastic polymers, when the mitigation of internal charges and the nature of the interfacial regions are properly adjusted. Here, we explore polyethylene/montmorillonite nanocomposites, and we specifically investigate how to impart desirable dielectric behavior through controlled nanoscale texturing, i.e., through control of the spatial arrangement of the high aspect ratio nanofiller platelets. In particular, it is shown that filler alignment can be used to improve the high electric-field breakdown strength and the recoverable energy density. The origins of the improved high field performance were traced to improved charge-trapping by a synergy of nanofillers and polar maleic anhydride (MAH) groups—introduced via polyethylene-MAH copolymers—as templated by the inorganic nanofillers. Further, it is conclusively demonstrated that the alignment of the two-dimensional nanoparticles has a measurable positive effect on the breakdown strength of the materials and, consequently, on the maximum recoverable energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.