The classification of Acinetobacter baumannii by WHO as 'priority 1' antibiotic-resistant pathogen underlines the urgent need for novel antimicrobial agents towards this pathogen. In this work, screening of the A. baumannii phage AbTZA1 genome allowed the identification of a putative endolysin (AbLys1, EC3.2.1.17) that belongs to the glycoside hydrolase family 24 (GH24). The sequence of AbLys1 was cloned, expressed in E. coli and purified. The lytic activity and specificity of AbLys1 were evaluated against a range of Gram-positive and Gram-negative human pathogens. AbLys1 was found to display a high selectivity towards A. baumannii. Kinetic analysis was carried out to characterize the dependence of its lytic activity on pH. The enzyme shows its maximal activity at pH values 7-8. The structure of AbLys1 was determined by X-ray crystallography to 1.82 Å resolution. The overall structure revealed two helical domains: a small, antenna-like, N-terminal domain and a larger C-terminal domain with six α-helices and a β-hairpin. Both the antenna-like and β-hairpin regions contain short sequences (AMseq1 and AMseq2) with predicted antimicrobial activity. Engineering studies revealed a key role of AMseq1 and AMseq2 on the enzyme's lytic activity towards A. baumannii cells but not towards purified peptidoglycan. This suggests that both sequences affect the destabilization of the outer membrane, thus providing access of the catalytic domain to the peptidoglycan. In addition, the deletion of AMseq1 enhanced the enzyme stability, whereas the deletion of AMseq2 diminished it. The results suggest that AbLys1 is a promising new enzybiotic with efficient lytic and antimicrobial activity.
Background: Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that have been shown to be involved in the development of multi-drug resistance (MDR) mechanism toward chemotherapeutic agents. GST inhibitors have, therefore, emerged as promising chemosensitizers to manage and reverse MDR. Colchicine (COL) is a classical antimitotic, tubulin-binding agent (TBA) which is being explored as anticancer drug. Methods: In the present work, the interaction of COL and its derivative 2,3-didemethylcolchicine (2,3-DDCOL) with human glutathione transferases (hGSTA1-1, hGSTP1-1, GSTM1-1) was investigated by inhibition analysis, molecular modelling and molecular dynamics simulations. Results: The results showed that both compounds bind reversibly to human GSTs and behave as potent inhibitors. hGSTA1-1 was the most sensitive enzyme to inhibition by COL with IC50 22 μΜ. Molecular modelling predicted that COL overlaps with both the hydrophobic (H-site) and glutathione binding site (G-site) and polar interactions appear to be the driving force for its positioning and recognition at the binding site. The interaction of COL with other members of GST family (hGSTA2-2, hGSTM3-3, hGSTM3-2) was also investigated with similar results. Conclusion: The results of the present study might be useful in future drug design and development efforts towards human GSTs.
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-l-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby–Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded β-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.