Every so often, a confluence of novel technologies emerges that radically transforms every aspect of the industry, the global economy, and finally, the way we live. These sharp leaps of human ingenuity are known as industrial revolutions, and we are currently in the midst of the fourth such revolution, coined Industry 4.0 by the World Economic Forum. Building on their guideline set of technologies that encompass Industry 4.0, we present a full set of pillar technologies on which Industry 4.0 project portfolio management rests as well as the foundation technologies that support these pillars. A complete model of an Industry 4.0 factory which relies on these pillar technologies is presented. The full set of pillars encompasses cyberphysical systems and Internet of Things (IoT), artificial intelligence (AI), machine learning (ML) and big data, robots and drones, cloud computing, 5G and 6G networks, 3D printing, virtual and augmented reality, and blockchain technology. These technologies are based on a set of foundation technologies which include advances in computing, nanotechnology, biotechnology, materials, energy, and finally cube satellites. We illustrate the confluence of all these technologies in a single model factory. This new factory model succinctly demonstrates the advancements in manufacturing introduced by these modern technologies, which qualifies this as a seminal industrial revolutionary event in human history.
Fabricating objects with desired mechanical properties by utilizing 3D printing methods can be expensive and time-consuming, especially when based only on a trial-and-error test modus operandi. Digital twins (DT) can be proposed as a solution to understand, analyze and improve the fabricated item, service system or production line. However, the development of relevant DTs is still hampered by a number of factors, such as a lack of full understanding of the concept of DTs, their context and method of development. In addition, the connection between existing conventional systems and their data is under development. This work aims to summarize and review the current trends and limitations in DTs for additive manufacturing, in order to provide more insights for further research on DT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.