The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.
The seeds of Albizia julibrissin are dormant because of their hard seed coat and they need pretreatment in order to germinate. In this research the effect of a) dry heating, at 30°C to 100°C for 10 to 60 min, b) chemical scarification with concentrated H 2 SO 4 for 15, 30, 60, 90 or 120 min, c) mechanical scarification for 5 sec, d) seed soaking in warm water (30°C to 100°C for one to six hours) and e) seed soaking in tap water for one to six days, on seed germination were examined. The most successful treatment was chemical scarification in concentrated H 2 SO 4 for 2 hours (germination percentage 99%). Soaking in 40 or 50°C warm water also resulted in high germination percentages (86 and 91%). The germination obtained after soaking in tap water for two days was also satisfactory (73%). All the above treatments also increased the germination rate as the overall germination was completed in less than six weeks.
Broadleaved tree species in mountainous populations usually demonstrate high levels of diversity in leaf morphology among individuals, as a response to a variety of environmental conditions associated with changes in altitude. We investigated the parameters shaping leaf morphological diversity in 80 beech individuals (Fagus sylvatica L.), in light and shade leaves, growing along an elevational gradient and under different habitat types on Mt. Paggeo in northeastern Greece. A clear altitudinal pattern was observed in the morphological leaf traits expressing lamina size and shape; with increasing altitude, trees had leaves with smaller laminas, less elongated outlines, and fewer pairs of secondary veins. However, this altitudinal trend in leaf morphology was varied in different habitat types. Furthermore, the shade leaves and light leaves showed differences in their altitudinal trend. Traits expressing lamina shape in shade leaves were more related to altitude, while leaf size appeared to be more influenced by habitat type. While the altitudinal trend in leaf morphology has been well documented for numerous broadleaved tree species, in a small spatial scale, different patterns emerged across different habitat types. This morphological variability among trees growing in a mountainous population indicates a high potential for adaptation to environmental extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.