Synthetic terrain realism is critical in VR applications based on computer graphics (e.g., games, simulations). Although fast procedural algorithms for automated terrain generation do exist, they still require human effort. This paper proposes a novel approach to procedural terrain generation, relying on Generative Adversarial Networks (GANs). The neural model is trained using terrestrial Points-of-Interest (PoIs, described by their geodesic coordinates/altitude) and publicly available corresponding satellite images. After training is complete, the GAN can be employed for deriving realistic terrain images onthe-fly, by merely forwarding through it a rough 2D scatter plot of desired PoIs in image form (so-called "altitude image"). We demonstrate that such a GAN is able to translate this rough, quickly produced sketch into an actual photorealistic terrain image. Additionally, we describe a strategy for enhancing the visual diversity of trained model synthetic output images, by tweaking input altitude image orientation during GAN training. Finally, we perform an objective and a subjective evaluation of the proposed method. Results validate the latter's ability to rapidly create life-like terrain images from minimal input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.