We propose constant approximation algorithms for generalizations of the Flexible Flow Shop (FFS) problem which form a realistic model for non-preemptive scheduling in MapReduce systems. Our results concern the minimization of the total weighted completion time of a set of MapReduce jobs on unrelated processors and improve substantially on the model proposed by Moseley et al. (SPAA 2011) in two directions. First, we consider each job consisting of multiple Map and Reduce tasks, as this is the key idea behind MapReduce computations, and we propose a constant approximation algorithm. Then, we introduce into our model the crucial cost of data shuffle phase, i.e., the cost for the transmission of intermediate data from Map to Reduce tasks. In fact, we model this phase by an additional set of Shuffle tasks for each job and we manage to keep the same approximation ratio when they are scheduled on the same processors with the corresponding Reduce tasks and to provide also a constant ratio when they are scheduled on different processors. This is the most general setting of the FFS problem (with a special third stage) for which a constant approximation ratio is known.The authors were partially supported by the European Social Fund and Greek national resources under Thales-DELUGE and Heracleitus II programs. A short extended abstract of this work, including partial results, appeared in EDBT/ICDT 2014 Workshop on Algorithms for MapReduce and Beyond.
MapReduce is emerged as a prominent programming model for data-intensive computation. In this work, we study power-aware MapReduce scheduling in the speed scaling setting first introduced by Yao et al. [FOCS 1995]. We focus on the minimization of the total weighted completion time of a set of MapReduce jobs under a given budget of energy. Using a linear programming relaxation of our problem, we derive a polynomial time constant-factor approximation algorithm. We also propose a convex programming formulation that we combine with standard list scheduling policies, and we evaluate their performance using simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.